
Study on the Effect of Sulfuric Acid Addition on the Porosity and Permeability Properties of Nata De Soya Porous Membranes
Abstract
Porous nata de soya membranes are a promising filtration material due to their good mechanical and chemical properties. However, further modifications are necessary to enhance their filtration performance, one of which involves the addition of sulfuric acid. Therefore, the objective of this study is to investigate the effect of sulfuric acid addition on the porosity and permeability properties of porous nata de soya membranes. Porosity tests using Scanning Electron Microscope (SEM) were conducted to analyze the microstructure of the nata de soya membranes. The SEM characterization results provide detailed images of the membrane's pore structure, including size, distribution, surface area, and pore density. Additionally, permeability analysis was performed using Darcy's law. The results indicate that the addition of sulfuric acid affects the porosity and permeability of the membranes. Increasing the sulfuric acid concentration from 15% to 25% resulted in a decrease in porosity from 51% to 47%. The pore size increased from 0.35 µm at 15% to 0.86 µm at 25%. Furthermore, the surface area and pore density decreased with the increasing concentration of sulfuric acid, indicating a reduction in membrane effectiveness in filtration processes. The membrane's permeability decreased drastically from 2.55287 x 10-9 m² at 15% to 2.12739 x 10-12 m² at 25%, demonstrating that sulfuric acid causes pore closure and structural damage to the membrane, reducing its ability to allow fluid to pass through. The implications of this research suggest that porous nata de soya membranes are effective for microfiltration of bacteria (such as E. coli) and wastewater filtration.
Keywords
Full Text:
PDFReferences
S. Karki, G. Hazarika, D. Yadav, and P. G. Ingole, “Polymeric membranes for industrial applications: Recent progress, challenges and perspectives,” Desalination, vol. 573, p. 117200, 2024, doi: https://doi.org/10.1016/j.desal.2023.117200.
A. Barhoum et al., “Nanocelluloses as sustainable membrane materials for separation and filtration technologies: Principles, opportunities, and challenges,” Carbohydr. Polym., vol. 317, p. 121057, 2023, doi: https://doi.org/10.1016/j.carbpol.2023.121057.
L. Qiao, Z. Kang, Z. Li, Y. Feng, and D. Sun, “Crystalline porous material based membranes for hydrogen separation,” Fuel, vol. 359, p. 130477, 2024, doi: https://doi.org/10.1016/j.fuel.2023.130477.
F. C. Nisa, “Nisa – Produksi Nata de Soya Nisa – Produksi Nata de Soya,” Teknol. Pertan., vol. 3, no. 2, p. 93, 2002.
E. A. Kristanti, S. H. Bintari, and S. Ridlo, “Pengembangan Perangkat Pembelajaran Bioentrepreneurship Pembuatan Makanan Dari Limbah Cair Pengolahan Kedelai,” J. Innov. Sci. Educ., vol. 1, no. 1, pp. 1–9, 2012.
S. D. Marliyana et al., “Pengolahan Limbah Cair Tahu Menjadi Nata De Soya Melalui Proses Fermentasi,” Proceeding Chem. Conf., vol. 6, p. 34, 2021, doi: 10.20961/pcc.6.0.55087.34-37.
N. Azizah, S. Nurhayati, T. A. Sari, R. N. Sari, and S. H. Bintari, “Daya Terima Masyarakat Kelurahan Sumurrejo Terhadap Nata De Soya Sebagai Olahan Limbah Produksi Tempe,” J. Bina Desa, vol. 4, no. 1, pp. 19–31, 2022, doi: 10.15294/jbd.v4i1.22056.
I. Gudavadze and E.-L. Florin, “Normal capillary forces on a spherical particle protruding from a thin liquid film and its application to swarming bacteria,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 636, p. 128176, 2022, doi: https://doi.org/10.1016/j.colsurfa.2021.128176.https://doi.org/10.1016/j.jviromet.2023.114732.
Masturi, Silvia, M. P. Aji, E. Sustini, Khairurrijal, and M. Abdullah, “Permeability, strength and filtration performance for uncoated and titania-coated clay wastewater filters,” Am. J. Environ. Sci., vol. 8, no. 2, pp. 79–94, 2012, doi: 10.3844/ajessp.2012.79.94.
N. P. Aryani and S. S. Edie, “Pengembangan Briket Bonggol Jagung sebagai Sumber Energi Terbarukan,” J. Mipa, vol. 40, no. 1, pp. 20–23, 2017.
H. Luo et al., “High-porosity thin membrane for high-efficiency capture of rare cells,” Sensors Actuators B Chem., vol. 398, no. October 2023, p. 134720, 2024, doi: 10.1016/j.snb.2023.134720.
X. Li, Y. Qin, R. Liu, Y. Zhang, and K. Yao, “Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation,” Desalination, vol. 307, pp. 34–41, 2012, doi: https://doi.org/10.1016/j.desal.2012.08.023.
J. Wang, M. Chen, J. Zhang, X. Sun, N. Li, and X. Wang, “Dynamic membrane filtration accelerates electroactive biofilms in bioelectrochemical systems,” Environ. Sci. Ecotechnology, vol. 20, p. 100375, 2023, doi: 10.1016/j.ese.2023.100375.
F. Faridah, E. Elwina, R. Fauzan, M. Marzuki, C. Azmi, and A. Arifien, “The effect of ratio of pineapple skin water and coconut water in cellulose membrane production and its application,” no. October, pp. 24–25, 2019.
S. Aghajani, C. Wu, Q. Li, and J. Fang, “Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties, and future directions,” Thin-Walled Struct., vol. 197, p. 111539, 2024, doi: https://doi.org/10.1016/j.tws.2023.111539.
M. Jiao, G. Pei, L. Yang, Z. Li, Q. Mi, and X. Lv, “Dissolution behavior of sodium titanates in sulfuric acid and applications to the separation of TiO2 from titanium-containing slag,” Sep. Purif. Technol., p. 128070, 2024, doi: https://doi.org/10.1016/j.seppur.2024.128070.
M. Masturi, E. Sustini, K. Khairurrijal, and A. Mikrajuddin, “Titania Coated Ceramic Membrane from Clay and Muntilan Sand for Wastewater Filter Application,” Adv. Mater. Res., vol. 896, pp. 70–73, 2014, doi: 10.4028/www.scientific.net/AMR.896.70.
M. Kesava and K. Dinakaran, “SnO2 Nanoparticle Assisted Enhanced Proton Exchange Membrane Fuel Cell Performance of Sulfuric Acid-Doped Porous Poly (Triphenylpyridine–Aliphatic Ethers),” J. Phys. Chem. C, vol. 125, no. 1, pp. 130–142, Jan. 2021, doi: 10.1021/acs.jpcc.0c08739.
M. He, S. Zhang, Y. Su, R. Zhang, Y. Liu, and Z. Jiang, “Manipulating membrane surface porosity and pore size by in-situ assembly of Pluronic F127 and tannin,” J. Memb. Sci., vol. 556, pp. 285–292, 2018, doi: https://doi.org/10.1016/j.memsci.2018.03.087.
C. Wang, K. Wu, G. G. Scott, A. R. Akisanya, Q. Gan, and Y. Zhou, “A New Method for Pore Structure Quantification and Pore Network Extraction from SEM Images,” Energy & Fuels, vol. 34, no. 1, pp. 82–94, Jan. 2020, doi: 10.1021/acs.energyfuels.9b02522.
M. Matyka, A. Khalili, and Z. Koza, "Tortuosity-porosity relation in porous media flow," Phys. Rev. E, vol. 78, no. 2, Feb. 2008. [Online]. Available: https://doi.org/10.1103/PhysRevE.78.026306
C. Lee, S. Lee, and S. W. Kang, “Enhanced porous membrane fabrication using cellulose acetate and citric acid: Improved structural integrity, thermal stability, and gas permeability,” Carbohydr. Polym., vol. 324, no. November 2023, p. 121571, 2024, doi: 10.1016/j.carbpol.2023.121571.
J. Sim, M. Kang, and K. Min, “Effects of porosity gradient and average pore size in the in-plane direction and disposition of perforations in the gas diffusion layer on the performance of proton exchange membrane fuel cells,” J. Power Sources, vol. 544, no. August, p. 231912, 2022, doi: 10.1016/j.jpowsour.2022.231912.
S. Song, L. Rong, K. Dong, X. Liu, P. Le-Clech, and Y. Shen, “Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes,” J. Memb. Sci., vol. 642, no. September 2021, p. 119920, 2022, doi: 10.1016/j.memsci.2021.119920.
J. R. Nimmo, Porosity and Pore Size Distribution. Published by Elsevier Inc., 2013. doi: 10.1016/b978-0-12-409548-9.05265-9.
G. Li, L. Meng, J. Wang, G. Chen, X. Wu, and Q. Su, “Water vapor permeability in heterogeneous porous membranes: Analytical modeling and experimental characterization,” Int. Commun. Heat Mass Transf., vol. 147, p. 106950, 2023, doi: 10.1016/j.icheatmasstransfer.2023.106950.
D. M. Panaitescu et al., “Nanofibrous scaffolds based on bacterial cellulose crosslinked with oxidized sucrose,” Int. J. Biol. Macromol., vol. 221, no. May, pp. 381–397, 2022, doi: 10.1016/j.ijbiomac.2022.08.189.
A. B. Shlekhin, A. G. Dixon, and Y. H. Ma, “Adsorption, diffusion and permeation of gases in microporous membranes. III. Application of percolation theory to interpretation of porosity, tortuosity, and surface area in microporous glass membranes,” J. Memb. Sci., vol. 83, no. 2, pp. 181–198, 1993, doi: https://doi.org/10.1016/0376-7388(93)85266-Y.
X. Kong, G. Shu, X. Lu, C. Wu, and Y. Gai, “Manipulating membrane surface porosity via deep insight into surfactants during nonsolvent induced phase separation,” J. Memb. Sci., vol. 611, p. 118358, 2020, doi: https://doi.org/10.1016/j.memsci.2020.118358.
T. K. Manios, A. Pihlajamäki, D. Mattia, and M. R. Bird, “Effect of fouling and cleaning upon the surface charge and porosity of polyethersulphone membranes during coffee brew decaffeination,” Food Bioprod. Process., vol. 141, pp. 60–72, 2023, doi: https://doi.org/10.1016/j.fbp.2023.07.005.
M. Abunada et al., “Improving MFI-UF constant flux to more accurately predict particulate fouling in RO systems: Quantifying the effect of membrane surface porosity,” J. Memb. Sci., vol. 660, p. 120854, 2022, doi: https://doi.org/10.1016/j.memsci.2022.120854.
Y. Zhang et al., “Improvement of filtration performance of polyvinyl chloride/cellulose acetate blend membrane via acid hydrolysis,” J. Appl. Polym. Sci., vol. 138, no. 17, p. 50312, May 2021, doi: https://doi.org/10.1002/app.50312.
B.-M. Jun, H. K. Lee, Y.-I. Park, and Y.-N. Kwon, “Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties,” Polym. Degrad. Stab., vol. 162, pp. 1–11, 2019, doi: https://doi.org/10.1016/j.polymdegradstab.2019.02.008.
J. Wei and X. Wu, “Sulfite permeability and sulfur accumulation in a sulfite depolarized electrolyser,” J. Electroanal. Chem., vol. 964, p. 118336, 2024, doi: https://doi.org/10.1016/j.jelechem.2024.118336.
M. E. C. Hutabarat, D. R. Jati, and H. Desmaiani, "Penilaian Kondisi Sanitasi dan Cemaran Escherichia coli pada Limbah Cair di Pasar Tradisional Kota Pontianak," J. Teknol. Lingkungan Lahan Basah, vol. 11, no. 3, p. 764, 2023. [Online]. Available: https://doi.org/10.26418/jtllb.v11i3.69199
W. Bisping and G. Amtsberg, Colour atlas for the diagnosis of bacterial pathogens in animals, pp. 339, 1988.
Copyright (c) 2024 Nur Lailatul Qodriyah, Masturi Masturi, Siti Harnina Bintari, Prasetya Aji

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License