Sintesis Ferrat sebagai Pendegradasi Senyawa Turunan Benzena
Abstract
Penelitian ini dilakukan dengan tujuan untuk mensintesis kalium ferrat (K2FeO4) dengan menggunakan berbagai sumber Fe dan diaplikasikan pada pendegradasian senyawa turunan benzene seperti klorobenzena, bromobenzena dan toluene. Pada penelitian ini telah berhasil mensintesis dengan mengunakan 4 sumber Fe yang berbeda diantaranya FeSO4.9H2O, FeCl2.9H2O, Fe(NO3)2.9H2O, dan NaFeO2. Masing masing kristal kalium ferrat hasil sintesis berwarna hitam keunguan. Pada analisa menggunakan spektrofotometer UV-Vis, ferrate memiliki panjang gelombang pada 510nm. Sintesis kalium ferrat menggunakan NaFeO2 memiliki tingkat kemurnian yang paling tinggi. Pada hasil uji degradasi, efisiensi tertinggi didapatkan pada degradasi toluene sebesar 53% hanya dalam 10 menit waktu reaksi. Hal ini menunjukan bahwa kalium ferrat merupakan bahan alternatif yang menjajikan dalam pengolahan air maupun limbah industri.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
R. Nurhayati and N. Kusumawati, “Pemanfaatan kalium ferrat dalam pengolahan limbah pewarna,” Inotek, vol. 16, 2012.
S. Wulandari and S. Anshar, “Degradasi Limbah Cair Kelapa Sawit dengan Penambahan Bakteri Rizosfir Actinomycetes dan Tanaman Typha Angustifolia dengan Model Constructed Treatment Wetland (CTW),” J. Biog., vol. 11, pp. 55–60, 2014.
S. D. Pravasi, “Chlorobenzene A2 - Wexler, Philip BT - Encyclopedia of Toxicology (Third Edition),” Oxford: Academic Press, 2014, pp. 870–873.
M. A. Bryant, “Bromobenzene A2 - Wexler, Philip BT - Encyclopedia of Toxicology (Third Edition),” Oxford: Academic Press, 2014, pp. 559–560.
S. R. Clough, “Toluene A2 - Wexler, Philip BT - Encyclopedia of Toxicology (Third Edition),” Oxford: Academic Press, 2014, pp. 595–598.
E. Selli, C. L. Bianchi, C. Pirola, G. Cappelletti, and V. Ragaini, “Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis,” J. Hazard. Mater., vol. 153, no. 3, pp. 1136–1141, 2008.
USEPA, “National pollutant discharge elimination system,” Code Fed. Regul., no. 1988, 1988.
N. Musilová-Kebrlová, P. Janderka, and L. Trnková, “Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode,” Collect. Czechoslov. Chem. Commun., vol. 74, pp. 611–625, 2009.
M. V Monferrán, J. R. Echenique, and D. A. Wunderlin, “Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer,” Chemosphere, vol. 61, no. 1, pp. 98–106, 2005.
S. J. de Luca, C. N. Idle, and A. C. Chao, “Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds,” Water Sci. Technol., vol. 33, no. 3, pp. 119–130, 1996.
G. W. Thompson, L. T. Ockerman, and J. M. Schreyer, “Preparation and Purification of Potassium Ferrate. VI,” J. Am. Chem. Soc., vol. 73, no. 3, pp. 1379–1381, Mar. 1951.
V. K. Sharma, “Apparatus and Method For Producing Liquid Ferrate,” 31-Mar-2011.
J. Jiang, “Advances in the development and application of ferrate ( VI ) for water and wastewater treatment,” no. September, pp. 165–177, 2014.
C. Li, X. Z. Li, N. Graham, and N. Y. Gao, “The aqueous degradation of bisphenol A and steroid estrogens by ferrate,” Water Res., vol. 42, no. 1, pp. 109–120, 2008.
V. K. Sharma, “Potassium ferrate(VI): an environmentally friendly oxidant,” Adv. Environ. Res., vol. 6, no. 2, pp. 143–156, 2002.
J.-Q. Jiang and B. Lloyd, “Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment,” Water Res., vol. 36, no. 6, pp. 1397–1408, 2002.
A. Al-Abduly and V. K. Sharma, “Oxidation of benzothiophene, dibenzothiophene, and methyl-dibenzothiophene by ferrate(VI),” J. Hazard. Mater., vol. 279, pp. 296–301, Aug. 2014.
R. C. Pepino Minetti, H. R. Macaño, J. Britch, and M. C. Allende, “In situ chemical oxidation of BTEX and MTBE by ferrate: pH dependence and stability,” J. Hazard. Mater., vol. 324, pp. 448–456, 2017.
G. A. K. Anquandah and V. K. Sharma, “Oxidation of octylphenol by ferrate(VI),” J. Environ. Sci. Heal. Part A, vol. 44, no. 1, pp. 62–66, Jan. 2009.
Y. Jiang, J. E. Goodwill, J. E. Tobiason, and D. A. Reckhow, “Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors,” Water Res., vol. 96, pp. 114–125, 2016.
V. Sharma, C. R. Burnett, and F. Millero, Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media, vol. 3. 2001.
S. Licht et al., “Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization,” J. Power Sources, vol. 101, no. 2, pp. 167–176, 2001.
J. Chengchun, L. Chen, and W. Shichao, “Preparation of Potassium Ferrate by Wet Oxidation Method Using Waste Alkali: Purification and Reuse of Waste Alkali,” in Ferrates, vol. 985, American Chemical Society, 2008, pp. 5–94.
Y.-L. Wei, Y.-S. Wang, and C.-H. Liu, “Preparation of Potassium Ferrate from Spent Steel Pickling Liquid,” Metals (Basel)., vol. 5, no. 4, pp. 1770–1787, 2015.
Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (fe(vi)) in aqueous solution and its applications as a green chemical, vol. 10. 2004.
M. Dian and K. Il-Kyu, “Degradation of Toluene by Liquid Ferrate(VI) and Solid Ferrate(VI) in Aqueous Phase,” J. Environ. Eng., vol. 144, no. 9, p. 4018093, Sep. 2018.
F. B. Laksono and I. Kim, “Removal of 2-Bromophenol by Advanced Oxidation Process with In- situ Liquid Ferrate ( VI ),” pp. 128–135, 2016.
J.-H. Nam, I.-K. Kim, J. Kwon, and Y. Do Kim, “Applications of electrochemical ferrate(VI) for degradation of trichloroethylene in the aqueous phase,” Desalin. Water Treat., vol. 57, no. 11, pp. 5138–5145, Mar. 2016.
C. Bougheloum and A. Messalhi, “Photocatalytic Degradation of Benzene Derivatives on TiO2 Catalyst,” Phys. Procedia, vol. 2, no. 3, pp. 1055–1058, 2009.
N. Graham, C. Jiang, X.-Z. Li, J.-Q. Jiang, and J. Ma, “The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate,” Chemosphere, vol. 56, no. 10, pp. 949–956, 2004.
B. Gu, J. Schmitt, Z. Chen, L. Liang, and J. F. McCarthy, “Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models,” Environ. Sci. Technol., vol. 28, no. 1, pp. 38–46, Jan. 1994.
Copyright (c) 2020 Dian Majid
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License