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I. Introduction 

Malaria continues to be a critical worldwide health issue, causing significant morbidity and 

mortality [1]. The World Health Organization (WHO) approximates that around 229 million cases of 

malaria occurred, resulting in 409.000 deaths in the year 2019 [2]. This vector-borne disease 

represents a severe obstacle to reaching Sustainable Development Goal 3 (SDG 3): promoting health 

and well-being for all [3]. Malaria is referred to as a neglected tropical illness on SDG indicator 3.3, 

and it is expected to end in 2030 [4]. 

Malaria is most likely to be found in tropical and subtropical countries [5]. This disease is caused 

by the Plasmodium parasite, transmitted mainly through the bite of an infected female Anopheles 

mosquito [6]. The Anopheles mosquito thrives in tropical regions due to higher temperatures and 

humidity [7]. Indonesia is one of the tropical countries that is plagued by malaria [8]. According to 

the WHO, Indonesia is the second highest contributor to the worldwide malaria case count [9].  Even 

though the government's efforts to eradicate malaria have materialized in most parts of Indonesia 

(94%) [10], cases of malaria are still high in eastern Indonesia, for example, the Provinces of West 

Papua [11]. This indicates that the eradication of Malaria has not been evenly distributed. According 

to data from Statistics Indonesia (BPS), West Papua had a relatively high malaria incidence rate of 

7.380 cases per 1000 inhabitants in 2019 [12]. After Papua, West Papua has the second highest malaria 

incidence rate in Indonesia [12]. 
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Province, Indonesia, known for diverse ecological conditions and varying malaria 
prevalence, as a case study area. From the built index, the risk zone map is then formed 
with the K-Means algorithm. One key finding is the elevated risk in Fakfak Regency, 
demanding particular attention, as its high-risk area represents 45% of its total. This 
research aids localized decision-making to combat malaria's unique challenges in 
West Papua Province which are relevant for implementation in other regions, 
contributing to SDG-aligned interventions for malaria eradication by 2030. 
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To meet the Indonesia Ministry of Health's target of eliminating malaria by 2030, especially in 

Papua [13], various efforts have been made. This endeavor includes a variety of strategies, including 

local leaders' advocacy, mosquito net distribution, monitoring of their use, the availability of 

antimalarial medications, early disease identification, enhancing health professionals' competency, 

and cross-program coordination [14]. However, according to the publication of the National Action 

Plan for Accelerating Malaria Elimination 2020-2026, one of the shortcomings in those efforts is the 

low receptivity mapping [source]. Yet, geographical variables significantly contribute to the growth 

of Anopheles mosquitoes, thus these efforts need to be optimized with a better understanding of 

malaria risk zones [15]. However, to produce a good mapping, direct exploration of the entire West 

Papua region is required, which is considered less effective in terms of time and cost. 

Remote sensing, on the other hand, can be a useful method for mapping possible mosquito habitat 

zones [16]. The advantages of remote sensing include its ability to provide comprehensive insights 

into environmental conditions without the need to touch it [17], facilitate the identification of potential 

breeding sites [18], and help optimize targeted control strategies for mosquito-borne diseases [19]. 

Recent studies have found that mosquito disease transmission is influenced by rainfall, humidity, and 

temperature [20]. Significant rain causes a lot of standing water [21] stated that the Normalized 

Differenced Water Index (NDWI) could detect the surface of the earth that contains water, which can 

be a breeding ground for mosquitoes [21]. NDWI can also detect flood inundation [22], mangrove 

distribution [23], agricultural land drought detection [23], and so on. The use of NDWI has been 

implemented in various countries, such as Indonesia [24], India [25], Iraq [26], and Nepal [27]. Apart 

from NDWI, satellite imagery can also provide a Normalized Difference Moisture Index (NDMI), 

which is used to identify the humidity of an area [28]. The moisture of an area has a significant 

relationship to malaria cases [29][30] have used NDMI as a variable to determine areas where 

mosquitoes breed. The humidity of an area is also affected by the vegetation in that area [31]. 

Vegetation density can be detected by the Normalized Difference Vegetation Index (NDVI) [32]. 

NDWI, NDMI, and NDVI can be obtained from Sentinel-2 satellite imagery provided by Copernicus. 

Remote sensing can also detect the temperature of an area [33]. One of the satellites that can be utilized 

is the Moderate Resolution Imaging Spectroradiometer (MODIS) [33], which provides a particular 

band of Land Surface Temperature (LST) [33]. 

Of the various advantages offered, remote sensing data has the potential to support the eradication 

of malaria in Indonesia [34]. To the best of our knowledge, research discussing this is still rare in 

Indonesia, especially the combination of NDWI, NDMI, NDVI, and LST, which has not been widely 

explored in Indonesia, especially in West Papua. Therefore, we propose an index that can identify 

potential mosquito breeding areas formed from several indices with weighted summation. Precisely, 

this study will (1) calculate the Mosquito Habitat Suitability Index (MHSI) based on multi-source 

remote sensing representing mosquito breeding areas in the case study area, using the aggregation 

method of averaging at a 1 km grid level in 2020–2022; (2) provides a map of areas at risk as mosquito 

breeding sites with a spatial resolution of 1 km based on data for 2020-2022. By establishing a more 

granular risk zone, it is expected that mapping receptive areas can be generated without the need for 

direct visits to each area, allowing resources to be allocated more effectively, and targeted measures 

can be implemented to curb malaria transmission. The results of this research are expected to 

contribute to efforts to achieve SDG 3 targets regarding the reduction and even eradication of malaria 

in Indonesia. 

II. Methods  

A. Study Area 

Indonesia is a tropical country with the potential to be a habitat for the breeding of mosquitoes that 

serve as disease vectors [35]. Particularly in the eastern regions of Indonesia, the prevalence of malaria 

still presents concerning [11]. Data collected by Statistics Indonesia (BPS) in 2019 revealed that Papua 

Province had the highest prevalence rate, reaching 64,03 as in Figure 1. This was followed by West 

Papua with a prevalence rate of 7,38, and East Nusa Tenggara Province (locally known as “Nusa 

Tenggara Timur” or NTT) ranking third with a prevalence rate of 2,37 [12]. The significant disparities 
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in these prevalence rates confirm the diversity of situations among provinces, where most other 

provinces exhibit much lower malaria prevalence rates, even below 1. 

 

Fig. 1. West Papua, Indonesia as the case study area and its malaria cases (per 1000 population)  

B. Data Used in This Study 

In formulating the MHSI with a multisource approach, our research relies on utilizing satellite 

imagery encompassing several significant variables, namely NDWI, NDMI, NDVI, and LST. NDWI, 

as one of the variables, plays a role in identifying water bodies present on the Earth's surface [36]. On 

the other hand, NDMI plays a crucial role in detecting the level of moisture in a given area [37]. 

Meanwhile, NDVI is employed to assess vegetation density, aiding in depicting the density of 

vegetation in specific areas [38]. Furthermore, to comprehend the dynamics of surface temperature, 

LST information is utilized, which can reveal the temperature of regions in a more detailed manner 

[39]. 
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All of these variables were obtained and analyzed using Google Earth Engine (GEE), a cloud 

computing-based platform that is accessible for free [40]. In this approach, the main focus was directed 

towards our primary study area, West Papua Province, Indonesia. Data collection was conducted 

across three distinct periods, encompassing the years 2020, 2021, and 2022, in order to provide a 

comprehensive perspective on mosquito development within the region. NDWI, NDMI, and NDVI 

were derived from Sentinel-2 satellite imagery, which boasts relatively high resolutions ranging from 

10 m to 20 m [41]. On the other hand, LST data was acquired from MODIS satellite imagery [42]. 

Each dataset obtained from these satellites was scaled by a specific factor [41][42]. Further details on 

the characteristics of each variable are elaborated in Table 1. 

Table 1.  Summary of variables 

Source 
Spatial 

Resolution 
Variable Band Use 

Year Data 

Analysis 
Units References 

Sentinel-2 

[41] 
10 meter - 20 

meter 
NDWI  B3 (Green) 

and B8 (NIR) 
The mean 

value of 2315 

cloud masked 

images 

Index [43][44] 

  NDMI 
 

B8 (NIR) and 
SWIR (B11) 

 Index [45][46] 

  NDVI 

 

B4 (Red) and 

B8 (NIR) 

 Index [44][46] 

MODIS [42] 1000 meter LST 
 

LST_Day_1 
km 

The average 
of 365 images 

with cloud 

masking 

Kelvin (K) [45][47] 

 

C. Methodology 

The methodology employed in this study traverses a series of meticulous and systematic stages, 

aimed at formulating and developing the MHSI as a relevant analytical tool for identifying and 

mapping potential areas as habitats for disease vector mosquitoes. In this section, we will elaborate in 

detail on the approach taken, including data sources, satellite image processing, and computational 

methods employed. Data collection was carried out using GEE, while analysis and visualization were 

conducted using Google Colaboratory and QGIS 3.20.2, resulting in the expected output of a 1 km x 

1 km MHSI Map. The executed steps adhere to contemporary methodological guidelines and 

recognized frameworks within remote sensing and spatial analysis. Thus, the methodology we 

elucidate here establishes a robust foundation for achieving the objectives of this research. The 

research framework is systematically illustrated in Figure 2. 

 

Fig. 2. Research framework 
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The data was collected from the aforementioned sources. Subsequently, the data underwent 

preprocessing as a crucial stage [40]. Generally, data preprocessing is conducted to ensure the 

cleanliness of the data and enhance the quality of the analysis. Satellite image data used in this study 

was collected over the span of a year in 2020, 2021, and 2022. Each image data underwent 5 

preprocessing stages, namely cloud selection, cloud masking, mean reduction, missing value 

imputation, and band compositing. In the event of missing values within the collected data, we 

employed the K-Nearest Neighbors (KNN) Imputer for imputation. To obtain NDWI, NDMI, and 

NDVI, we utilized the following formulas as in (1) to (3). 

𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅
 (1) 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 (2) 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (3) 

In the methodology of this research, we employ zonal statistical analysis as a central approach. We 

initiate by subdividing the study area into spatial units of 1 km x 1 km using a grid shapefile. The 

subsequent process involves implementing zonal statistical analysis on each utilized variable, 

including NDWI, NDMI, NDVI, and LST. In this step, each variable is scrutinized in detail based on 

the 1 km x 1 km grid. The outcomes of this zonal statistical analysis offer a comprehensive 

understanding of the characteristics of each variable within each spatial unit. This approach provides 

further opportunities for interpretation regarding the distribution and variability of the variables across 

the entire study area. 

To construct the MHSI, transformations are applied to the variables to ensure they share the same 

range. This uniform range eliminates the dominance of any single variable, thereby enhancing the 

quality of the obtained analysis. The transformation method employed is MinMaxScaler. 

MinMaxScaler is a normalization technique that scales data to have a range of 0 to 1 [48]. The 

following is the MinMaxScaler formula [48] as in (4) to (5), where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the maximum 

and minimum values of each variable. 

𝑋𝑠𝑡𝑑 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (4) 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  𝑋𝑠𝑡𝑑  ∗  (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛 (5) 

The MHSI is constructed by overlaying variables that represent the spatial factors of mosquito 

habitat. We implement a weighted summation to combine the utilized variables. Weighted summation 

has been commonly applied in various spatial analyses [40].  Equation (6) is the formula, in which 𝑝 

stands for the quantity of overlay variables applied, 𝑤𝑖 signifies the weight, and 𝑥𝑖 represents the 

normalized variable value. This study assigns weights for NDWI, NDMI, NDVI, and LST as 12%, 

22%, 33%, and 33% respectively [49]. 

𝑀𝐻𝑆𝐼 =  ∑ 𝑤𝑖  𝑥𝑖

𝑝

𝑖 = 1

 (6) 

We clustered MHSI data for 2020-2021 to obtain a risk level for malaria mosquito breeding areas. 

Clustering uses the K-Means method because it has been widely used in other research, such as  who 

clustered COVID-19 cases [50], who clustered nutritional status [51], who clustered image data [52], 

who carried out classification and detection of malarial parasite in blood samples using K-Means 

clustering algorithm [53], carried out clustering of plasmodium falciparum genes to their functional 

roles using K-Means [54], and carried out identification of Giemsa stains of malaria using K-Means 

clustering segmentation technique [55]. 



 N.A. Daulay et al. / Knowledge Engineering and Data Science 2024, 7 (1): 40–57 45 

 

 

III. Results and Discussion 

This study utilizes the NDWI, NDMI, NDVI, and LST variables as factors for mosquito breeding. 

The NDWI has values ranging from -1, indicating non-aqueous surfaces, to 1, representing water 

surfaces. Similarly, the NDMI also has values ranging from -1 to 1, indicating that higher NDMI 

values correspond to higher humidity in the area. Like NDWI and NDMI, the NDVI also ranges from 

-1 to 1, where higher NDVI values signify greater vegetation in the area. In contrast to these three 

variables, the LST is presented in Kelvin units, although we converted it to Celsius. As present in 

Figure 3, all variables are compared for each period of this study, namely 2020, 2021, and 2022. Figure 

4 until Figure 7 illustrate the distribution of each variable for each year. We classified each variable 

value into three categories - low, medium, and high - using the Natural Breaks Jenks method. 

 
Fig. 3. Pseudocode for distributing each variable 

Figure 4 is classified using the Natural Breaks Jenks method and produces 3 colors: white (low), 

light blue (medium), and dark blue (high). Based on the NDWI data obtained in 2020, the 

classification results show the range of Low (-0.8180 to -0.5873), Medium (-0.5874 to -0.2514), and 

High (-0.2515 to 0.8677). The 2021 data shows the classification range of Low (-0.8617 to -0.5917), 

Medium (-0.5918 to -0.2488), and High (-0.2489 to 0.9747). The 2022 data yields classification 

ranges of Low (-0.8405 to -0.5648), Medium (-0.5649 to -0.2159), and High (-0.2160 to 0.9618). It 

is noticeable that in some areas of the Arfak Mountains, the NDWI values are increasing from year 

to year. In 2020, there were only 2 dark blue areas, which are Lake Anggi Giji and Lake Anggi Gida. 

Then, from 2021 to 2022, the number of light blue and dark blue areas increases. This indicates that 

there are more water puddles in the Arfak Mountains region. The lower the NDWI value, the less 

water there is on the surface; conversely, the higher the NDWI value, the more water there is on the 

surface.  

Figure 5 is classified using the Natural Breaks Jenks method and produces 3 colors: dark blue 

(low), gray (medium), and yellow (high). Based on the NDMI data obtained in 2020, the 

classification results show the range of Low (-0.5722 to 0.1322), Medium (0.1323 to 0.3050), and 

High (0.3051 to 0.8120). In contrast, the 2021 data shows the classification range of Low (-0.8447 

to 0.1284), Medium (0.1285 to 0.2998), and High (0.2999 to 0.8344). Similarly, the 2022 data yields 

classification ranges of Low (-0.4922 to 0.1268), Medium (0.1269 to 0.3046), and High (0.3047 to 

0.7556). It is noticeable that in some areas of Fakfak, there are changes in NDMI values. The NDMI 

also has values ranging from -1 to 1, indicating that higher NDMI values correspond to higher 

humidity in the area. 

Figure 6 is classified using the Natural Breaks Jenks method and produces 3 colors: white (low), 

light green (medium), and dark green (high). Based on the NDVI data obtained in 2020, the 

classification results show the range of Low (-0.7918 to 0.2844), Medium (0.2845 to 0.6768), and 

High (0.6769 to 0.9239). In contrast, the 2021 data shows the classification range of Low (-0.8304 

to 0.2863), Medium (0.2864 to 0.6833), and High (0.6834 to 0.9310). Similarly, the 2022 data yields 

classification ranges of Low (-0.9142 to 0.2459), Medium (0.2460 to 0.6473), and High (0.6474 to 

0.9304). Figure 6 shows a decrease in NDVI values in some areas of the Arfak Mountains from year 

to year. The higher the NDVI value, the higher the vegetation density in that area. 
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Fig. 4. Spatial mapping of humidity level in West Papua Province measured by the NDWI 
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Fig. 5. Spatial mapping of moisture level in West Papua Province measured by the NDMI 
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Fig. 6. Spatial mapping of vegetation density in West Papua Province measured by the NDVI 
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Fig. 7. Spatial mapping of area temperature in West Papua Province measured by the LST  
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Figure 7 is classified using the Natural Breaks Jenks method and produces 3 colors in Celsius: 

blue (low), yellow (medium), and red (high). Based on the LST data obtained in 2020, the 

classification results show the range of Low (13.5943 to 22.9751), Medium (22.9752 to 26.3774), 

and High (26.3775 to 34.6979). In contrast, the 2021 data shows the classification range of Low 

(11.9936 to 22.8823), Medium (22.8824 to 26.3163), and High (26.3164 to 34.7249). Similarly, the 

2022 data yields classification ranges of Low (13.9372 to 22.5171), Medium (22.5172 to 25.8498), 

and High (25.8499 to 33.8600). Overall, the temperature in West Papua has not changed much from 

2020 to 2022. Looking more closely at Figure 7, there are temperature changes in the Maybrat region 

from year to year, although not significant. 

To establish the MHSI, MinMaxScaler transformations were applied to the three variables: NDWI, 

NDMI, and NDVI. Upon transformation, these three variables would have a range of 0 to 1. In contrast 

to these three variables, we rendered the LST variable binary. LST is assigned a value of 1 when the 

temperature falls within the range of 23 to 29 degrees Celsius, while it takes the value of 0 otherwise. 

This approach is taken due to the optimal breeding temperature for mosquitoes lying within the 23 to 

29 degrees Celsius range [49]. Subsequently, the MHSI is constructed using weighted summation, 

with weights assigned to NDWI, NDMI, NDVI, and LST being 12%, 22%, 33%, and 33%, 

respectively [49]. So far, there have been no established guidelines for calculating a malaria 

vulnerability index based on environmental aspects in Indonesia. Additionally, the presented malaria 

prevalence data is still very limited. Therefore, the weight selection in this study refers to [49], which 

calculates the weight of environmental variables based on remote sensing data to construct predictions 

of malaria risk areas by considering the distribution of mosquitoes in a given region. Pseudocode for 

forming MHSI can be seen in Figure 8. 

 

Fig. 8. Pseudocode for forming MHSI 

Figure 9 is classified using the Natural Breaks Jenks method and produces 3 colors: white (low), 

pink (medium), and brown (high). Based on the MHSI values obtained in 2020, the classification 
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results show the range of Low (0.1872 to 0.5473), Medium (0.5474 to 0.7253), and High (0.7254 to 

0.8447). In contrast, the 2021 data shows the classification range of Low (0.2968 to 0.5666), Medium 

(0.5667 to 0.7528), and High (0.7529 to 0.8569). Similarly, the 2022 data yields classification ranges 

of Low (0.1567 to 0.5628), Medium (0.5629 to 0.7390), and High (0.7391 to 0.8518). The higher the 

MHSI value, the more potential the area is for mosquito breeding. 

Figure 9 illustrates a strikingly similar pattern, indicating that a majority of the areas with low 

MHSI values are situated in the Pegunungan Arfak Regency. The Pegunungan Arfak region is 

positioned at an elevation of 800 to 3,000 meters above sea level [56]. As an area's elevation increases, 

malaria cases tend to decrease [57][58]. Furthermore, the visualization portrays that the mosquito 

breeding habitat is progressively diminishing from year to year, leading to a reduction in national 

malaria cases [59]. Notably, a striking trend emerges as we progress from 2020 to 2022, with MHSI 

values showing a consistent decline over this period. The year 2022, in particular, highlights a 

significant reduction in MHSI values, reflecting a diminishing suitability for mosquito breeding 

habitats. This decline in habitat suitability aligns with the broader trends in Indonesia regarding 

malaria cases. As reported, Indonesia has been making substantial progress in combating malaria, with 

declining cases noted nationwide [56]. 

Malaria risk mapping was conducted in West Papua Province based on the MHSI obtained from 

2020 to 2022. We labeled areas that never had a high index in all three years of the research period as 

"BLOCK BOUNDARY" [49]. Then, other areas were clustered using the K-Means method for ease 

of interpretation. We utilized a parameter K set at 5, leading to the identification of 5 distinct risk 

levels. Figure 10 shows the pseudocode for forming risk map. 

 

Fig. 10. Pseudocode for forming risk map 

Figure 11 shows the distribution of areas according to the risk level of malaria vector mosquito 

breeding. Supporting our previous discussion, Figure 8 indicates that the Arfak Mountains are not 

included in the 5 risk levels. Areas with the highest risk are spread across most of West Papua. 

However, the purple color (symbolizing the highest risk level) is concentrated in the western and 

southwestern parts of West Papua. This aligns with the fact that the elevation of the western and 

southwestern regions is not higher than the northern part of West Papua. The higher the altitude of an 

area, the lower the number of malaria cases [57][56].  

Figure 12 shows the topography and elevation of West Papua obtained from Google Maps. The 

Figure reveals that the Arfak Mountains District (not labeled on Google Maps but adjacent to 

Manokwari District), Tindawi in Manokwari District, and Koor or Kwor in Tambrauw District are 

areas with higher elevation than others. 
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Fig. 9. Spatial distribution of the MHSI in West Papua Province 
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Fig. 11. Mapping the risk zones 

 

Fig. 12. Topography and elevation map of West Papua 

Additionally, we calculated the area of each district based on the risk level with computational 
capability. Figure 13 shows that most areas with the highest risk are in the districts of Teluk Bintuni, 
Fakfak, and Kaimana. The area of Teluk Bintuni with the highest risk is 8498 km², followed by Fakfak 
and Kaimana, with areas of 6462 km² and 6247 km², respectively. Although Teluk Bintuni has the 
largest area with the highest risk, Fakfak requires more attention. This is because the total area of 
Fakfak is only 14320 km², meaning that the percentage of the area with the highest risk in Fakfak is 
45% of the total Fakfak area. In contrast, Teluk Bintuni and Kaimana have total areas of 20840.33 
km² and 16241.84 km², respectively, indicating that the percentage of the area with the highest risk is 
41% and 38%. 

 

Fig. 13. Comparison of risk level in each regency (km2) 
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Using spatial variables at varying resolutions can have a notable impact on analytical outcomes. 

Differences in spatial resolution can lead to varying information, which, in turn, affects the precision 

of mapping results [60][61]. To illustrate, when it comes to mapping forest stock volume, the accuracy 

of mapping is often lower when high spatial resolution optical imagery (e.g., one meter or less) is used 

compared to medium-resolution imagery (greater than 10 meters), even when the same features and 

methods are applied [60]. To address this limitation, researchers in the field have utilized GF-2 

imagery, which was adjusted to spatial resolutions ranging from 1 to 30 meters. This adjustment 

allowed them to explore the connection between feature spatial resolution and the accuracy of forest 

stock volume mapping [60]. Their findings highlighted the substantial impact of feature spatial 

resolution on the performance of the modeling used to estimate forest stock volume [60]. Furthermore, 

another study has emphasized the influence of spatial resolution choices on model outcomes. This 

study has demonstrated how the selection of spatial resolution and scale can affect both mathematical 

and statistical models [61]. 

With the abundant potential of remote sensing technology, especially satellite imagery analytics 

[62][63][64] government efforts to achieve SDGs in numerous real-world use cases are highly 

supported [65][66][67]. The results provided show that there is potential for implementing malaria 

risk mapping with remote sensing in other endemic areas in Indonesia or even other regions. The 

advantage of precise characterizations of land uses, sea surfaces, and land coverings that are 

inexpensive and quickly updated enables researchers to provide solutions not only in agriculture, 

urban studies, demographic, socio-economic, environments, but also in health monitoring such we 

propose in this study [68][69][70][71]. 

IV. Conclusions 

This paper examines the potential of remote sensing and spatial analysis in mapping the malaria 

risk in West Papua Province, Indonesia. By formulating the MHSI and applying the K-Means 

clustering method, we successfully identified regions with Highest Risk, High Risk, Moderate Risk, 

Low Risk, and Lowest Risk for the breeding of malaria vector mosquitoes. The key findings indicate 

that most of the high-risk areas are located around the western and southwestern regions of West 

Papua, characterized by lower elevations.  

This outcome is consistent with the fact that malaria vector mosquitoes tend to thrive in areas with 

warmer climatic conditions. Additionally, our analysis also measured the extent of high-risk areas in 

each district. While the Teluk Bintuni District has the largest area with the highest risk, the Fakfak 

District deserves special attention due to its relatively higher percentage of high-risk areas compared 

to other regions. The results of this study can serve as a crucial foundation for policymakers in their 

efforts to control and prevent malaria in West Papua. The use of remote sensing data and spatial 

analysis provides a more comprehensive picture of malaria risk distribution, which can be utilized to 

direct limited resources to areas in need of further intervention. Thus, this study contributes to the 

global goal of eradicating malaria by 2030. 
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