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I. Introduction 
Dental X-ray imaging is crucial in diagnosing and planning treatments for various dental anomalies 

[1]. Accurate detection of conditions such as caries, crowns, fillings, implants, and periapical lesions 
is essential for effective dental healthcare [2]. However, manual interpretation of X-ray images is 
time-consuming, prone to human error, and highly dependent on the expertise of dental radiologists 
[3]. These challenges highlight the need for an automated and reliable approach to improve diagnostic 
accuracy and efficiency. 

Several deep-learning approaches for dental anomaly detection using object detection models have 
been proposed. Previous versions of YOLO, such as YOLOv4 and YOLOv5, have been successfully 
implemented in medical imaging, including dental radiographs [4][5]. Studies have demonstrated that 
these models accurately detect common dental conditions. However, they still exhibit limitations in 
identifying subtle anomalies like caries and periapical lesions [6][7]. Additionally, many existing 
methods rely on anchor-based detection, which increases computational complexity and requires 
extensive hyperparameter tuning [8][9]. These gaps indicate the need for further improvements in 
model efficiency, accuracy, and generalization across diverse dental conditions. 

To address these challenges, this study introduces an automated dental anomaly detection system 
using YOLOv8, a state-of-the-art deep learning model with an anchor-free detection strategy. 
YOLOv8 enhances feature extraction efficiency through its CSPDarknet53 backbone and C2f module, 
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Dental X-ray imaging is a critical diagnostic tool for identifying various dental 
anomalies. However, manual interpretation is time-consuming, prone to human error, 
and requires specialized expertise. Deep learning models, particularly object detection 
frameworks like YOLO, have demonstrated promising results in automating medical 
image analysis. This study aims to develop and evaluate a YOLOv8-based deep 
learning model for automated detection and classification of 14 dental anomaly 
categories, including Caries, Crowns, Fillings, Implants, and Periapical lesions. The 
proposed approach addresses limitations in previous YOLO versions by leveraging 
anchor-free detection and enhanced feature extraction for improved accuracy. The 
model was trained on a dataset of annotated dental X-ray images and preprocessed 
with data augmentation techniques to improve generalization. Performance was 
evaluated using Precision, Recall, F1-score, and Mean Average Precision (mAP). 
Additional insights were obtained from confusion matrices, precision-recall curves, 
and training-validation loss curves. The model achieved high precision in detecting 
Implants (0.90), Crowns (0.89), and Root Canal Treatment (0.69), demonstrating 
strong potential for clinical applications. However, Caries (0.30) and Periapical 
lesions (0.15) were detected with lower accuracy, indicating the need for further 
optimization. Analysis of training loss curves and label distributions suggested that 
class imbalance and anomaly co-occurrence influenced detection performance. 
YOLOv8 presents a promising AI-based solution for dental anomaly detection, 
capable of improving diagnostic efficiency and accuracy in clinical practice. The 
model’s integration into dental healthcare systems can reduce radiologists' workload 
and enhance early disease detection, particularly in resource-limited settings. 
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enabling real-time and high-precision object detection [10]. The primary objective of this research is 
to develop and evaluate a YOLOv8-based model for detecting and classifying 14 dental anomaly 
categories, improving upon the limitations of previous YOLO versions. 

This study contributes to the field by offering a novel implementation of YOLOv8 in dental X-ray 
analysis, demonstrating its effectiveness in detecting a broad range of dental conditions. The key 
contributions of this work include (1) developing a robust deep learning model tailored for dental 
anomaly detection, (2) providing a comparative analysis of YOLOv8’s performance against previous 
models, and (3) identifying areas for further improvements in automated dental diagnostics. The 
findings of this research can serve as a foundation for future advancements in AI-driven dental 
healthcare solutions. 

II. Method 

A. Data Collection and Preprocessing 

The dataset used in this study consists of annotated dental X-ray images collected from multiple 
sources, including publicly available dental imaging repositories and clinical datasets. Each X-ray 
image is labeled with one of 14 predefined dental anomaly categories: Caries, Crown, Filling, Implant, 
Malaligned Teeth, Mandibular Canal, Missing Teeth, Periapical Lesion, Retained Root, Root Canal 
Treatment, Root Piece, Impacted Tooth, and Maxillary Sinus. The dataset was curated to ensure a 
balanced representation of each anomaly class, as a class imbalance can lead to biased model 
predictions. Additionally, experienced dental radiologists reviewed and validated images to ensure 
accurate labeling and minimize annotation errors. 

Several data augmentation techniques were applied. These include geometric transformations such 
as rotation, flipping, and scaling, which help the model learn invariant features across different dental 
structures [11]. Contrast-limited adaptive histogram equalization (CLAHE) was employed to enhance 
image contrast, particularly in cases where X-rays exhibited poor visibility due to variations in 
exposure settings [12]. Furthermore, Gaussian noise and random brightness adjustments were 
incorporated to simulate real-world variations in radiographic imaging conditions [13]. All images 
were resized to 640×640 pixels before training to maintain consistency in input dimensions, ensuring 
compatibility with the YOLOv8 model architecture. 

B. YOLOv8 Model 

YOLOv8 introduces several advancements over its predecessors, making it a powerful tool for 
object detection, including dental anomaly classification in X-ray imaging [14]. Unlike earlier YOLO 
versions, YOLOv8 adopts an anchor-free detection strategy, eliminating the need for predefined 
anchor boxes and reducing computational overhead [15]. This approach improves model efficiency 
while maintaining high detection accuracy across multiple classes. Additionally, YOLOv8 employs 
adaptive spatial feature fusion, which enhances the model’s ability to detect objects at varying 
scales—crucial for identifying dental anomalies that differ in size, shape, and intensity [16]. The 
architecture integrates CSPDarknet53 as its backbone, utilizing cross-stage partial networks (CSPNet) 
to optimize gradient flow and improve feature representation. 

A key improvement in YOLOv8 is its C2f module (Cross-Stage Partial with Fusion), which refines 
feature extraction by allowing deeper interactions between feature maps at multiple levels [17]. This 
enhancement is particularly beneficial for dental X-ray analysis, where subtle differences in grayscale 
intensity and texture can indicate the presence of conditions such as caries or periapical lesions. 
Moreover, YOLOv8 incorporates an improved loss function based on Complete Intersection over 
Union (CIoU), ensuring more precise bounding box predictions by accounting for object shape and 
scale variations [18]. Another notable aspect is integrating a multi-label classification mechanism, 
enabling the model to detect multiple anomalies in a single X-ray image—a crucial capability in real-
world clinical settings where patients often exhibit more than one dental condition. 

Furthermore, YOLOv8 supports dynamic computational graphs, allowing flexible network 
modifications during training. This adaptability makes fine-tuning the model for specific medical 
imaging tasks easier without significant architecture redesigns. The model also benefits from 
improved augmentation techniques, including mosaic augmentation and mixup strategies, which help 
enhance robustness against variations in X-ray quality, noise, and contrast levels. These advancements 
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collectively position YOLOv8 as a highly effective tool for automated dental diagnostics, 
outperforming previous YOLO versions regarding precision, recall, and overall inference speed. 

C. Training Process 

The YOLOv8 model was trained using a dataset of annotated dental X-ray images, focusing on 
detecting 14 distinct dental anomalies. The training was conducted on an NVIDIA RTX 4060 GPU, 
leveraging approximately 3072 CUDA cores to accelerate computation. The model was trained with 
a batch size of 16 over 100 epochs using the Adam optimizer with an initial learning rate of 0.01 [19]. 
The loss functions used were binary cross-entropy for classification and Complete Intersection over 
Union (CIoU) for bounding box regression, which helped refine object localization accuracy [20]. 
Early stopping and learning rate scheduling were employed to mitigate overfitting, ensuring that the 
model adapted efficiently without excessive weight updates. Additionally, batch normalization was 
applied to stabilize training and accelerate convergence. 

Extensive data augmentation techniques such as rotation, flipping, contrast adjustment, and 
Gaussian noise addition were applied to the training dataset to enhance generalization. These 
augmentations helped simulate real-world variations in dental X-ray images, making the model more 
robust to different lighting conditions, image quality variations, and anatomical differences among 
patients. Furthermore, stratified sampling was used to maintain a balanced distribution of anomaly 
classes. This prevented the model from being biased toward more frequent conditions like implants 
and fillings while ensuring it learned to recognize rarer conditions such as periapical lesions. The 
model’s training performance was monitored using real-time visualization tools, allowing adjustments 
to hyperparameters when necessary. 

D. Evaluation Metrics 

Multiple key metrics were employed to comprehensively evaluate the performance of the YOLOv8 
model for dental anomaly detection, including Precision, Recall, F1-score, and Mean Average 
Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5. Precision measures the 
proportion of correctly identified anomalies out of all predicted anomalies [21]. At the same time, 
Recall indicates the proportion of correctly identified anomalies out of all actual anomalies in the 
dataset [22]. The F1-score, as the harmonic mean of Precision and Recall, provides a balanced 
assessment of the model's effectiveness [23]. Additionally, mAP serves as an overall measure of 
detection accuracy by computing the area under the Precision-Recall curve, which is particularly 
useful for evaluating object detection models across multiple classes [24]. 

Beyond these standard evaluation metrics, we further analyzed the model’s performance through 
confusion matrices, precision-recall curves, and F1-confidence curves to gain deeper insights into 
classification strengths and weaknesses. The confusion matrix provides a breakdown of true positive, 
false positive, and false negative classifications for each anomaly category, highlighting specific 
conditions where the model performs well or struggles. The precision-recall curve helps determine 
the optimal confidence threshold for classification by visualizing the trade-off between Precision and 
Recall. The F1-confidence curve, on the other hand, illustrates the consistency of model predictions 
across different confidence levels, which is crucial for fine-tuning decision thresholds in clinical 
applications. These comprehensive evaluation techniques ensure a robust assessment of the model's 
reliability and effectiveness for real-world dental anomaly detection. 

III. Result and Discussion 

Following the training of the YOLOv8 model, its performance was rigorously evaluated using 
multiple assessment techniques, including confusion matrices, precision-recall curves, and 
comparative visual analysis between model predictions and ground truth labels. The normalized 
confusion matrix (Figure 1) provides a detailed breakdown of the classification performance across 
14 dental anomaly categories, offering crucial insights into the model’s strengths and areas for 
improvement. The results indicate that the model excels in detecting highly distinct anomalies, such 
as Implants (0.90 precision), Crowns (0.89 precision), and Root Canal Treatment (0.69 precision), 
which are typically well-defined and contrast clearly against surrounding dental structures in X-ray 
images.  

However, the detection accuracy drops significantly for Caries (0.30 precision) and Periapical 
lesions (0.15 precision), suggesting that these anomalies are more challenging to differentiate due to 
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their subtle visual features, overlapping characteristics with surrounding tissues, or inherent variability 
in manifestation. The confusion matrix also reveals instances of misclassification, particularly among 
closely related categories, indicating the potential benefit of hierarchical classification approaches, 
refined feature extraction techniques, and additional dataset augmentation to enhance model 
performance. 

 

Fig. 1. Output showing bounding boxes around detected anomalies with confidence scores 

The input X-ray images and corresponding model predictions, as illustrated in Figure 2 and Figure 
3, visually represent the YOLOv8 model’s detection capabilities across multiple dental anomaly 
classes, revealing varying confidence levels depending on the anomaly type. The model demonstrates 
high confidence in detecting "Filling" and "Root Canal Treatment," likely due to their distinct 
radiographic features and well-defined structural contrasts in X-ray images. In contrast, "Caries" is 
often detected with lower confidence, attributed to its subtle appearance, overlapping features with 
adjacent dental structures, and varying intensities across different X-ray scans. These variations 
suggest that while YOLOv8 excels in identifying well-defined anomalies, its performance diminishes 
when detecting conditions with less pronounced visual characteristics or those that frequently co-
occur with other anomalies.  

The bounding box visualizations in Figure 2 highlight the precision of the model in localizing 
anomalies. In contrast, Figure 3 further illustrates instances where model predictions closely align 
with the ground truth labels, reinforcing the reliability of YOLOv8 in automated dental diagnostics. 
However, the occasional misclassification observed, particularly in "Caries" detection, suggests 
further fine-tuning, possibly through enhanced feature extraction techniques, additional training data, 
or adaptive thresholding strategies to improve sensitivity for subtle conditions. 
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Fig. 2. Output showing bounding boxes around detected anomalies with confidence scores 

 

Fig. 3. Raw input X-ray image for comparison 

The validation batch results presented in Figure 4 and Figure 5 provide crucial insights into the 
generalization capability of the YOLOv8 model in detecting dental anomalies across diverse X-ray 
samples. Figure 4 illustrates instances where the model accurately identifies anomalies such as 
Fillings, Crowns, and Root Canal Treatments, demonstrating its robustness in detecting well-defined 
dental structures with high confidence. Conversely, Figure 5 highlights cases where the model's 
predictions deviate from ground truth labels, particularly for Caries and Periapical Lesions, which 
exhibit lower contrast and more ambiguous visual patterns in X-ray imaging. These discrepancies 
suggest that while identifying distinct anomalies effectively, the model occasionally struggles with 
conditions that share overlapping features or appear in less pronounced radiographic forms. 

Figure 6 and Figure 7 provide critical insights into the model's training process, showcasing its 
capacity to generalize across multiple dental anomaly categories. The visualizations of predictions on 
a set of training batches illustrate how the YOLOv8 model effectively handles multi-class detection 
scenarios, accurately identifying anomalies such as Crowns, Fillings, and Implants with high 
confidence while struggling with more subtle conditions like Caries and Periapical lesions. These 
discrepancies suggest that certain anomaly classes may be underrepresented in the training data or 
exhibit higher intra-class variability, making them harder to detect.  
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Fig. 4. Validation of true labels 

 

Fig. 5. Validation of predicted labels 
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Fig. 6. Batch no. 8972 of the training model 

 

Fig. 7. Labels of the trained model 
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 Furthermore, label distribution analysis (Figure 8) reveals an uneven representation of dental 

conditions, with some classes being significantly more frequent than others, potentially influencing 

the model’s bias toward well-represented categories. The correlogram further reinforces this finding 

by highlighting co-occurrence patterns between dental anomalies, indicating that certain conditions, 

such as Root Canal Treatment and Periapical lesions, often appear together in X-rays. This 

correlation suggests incorporating hierarchical classification strategies or multi-label learning 

techniques could improve detection accuracy for interrelated conditions. 

 

Fig. 8.  Labels Correlogram of the trained model 

The precision-recall (PR) curve (Figure 9) and the F1-confidence curve (Figure 10) provide crucial 
insights into the trade-offs between precision and recall at varying confidence thresholds, offering a 
comprehensive view of the model's classification performance across different dental anomaly 
categories. The PR curve demonstrates that the model maintains high precision for well-defined 
anomalies such as "Implants" and "Crowns," reflecting its robustness in detecting these conditions 
with minimal false positives. However, a notable decline in recall is observed for "Caries" and 
"Periapical lesions," indicating that while the model minimizes false detections, it may also miss true 
instances of these anomalies, likely due to their subtle and less distinguishable radiographic features. 
The F1-confidence curve further complements this analysis by illustrating how the model’s 
classification balance shifts with changes in confidence thresholds; an optimal threshold range around 
0.5 to 0.6 is identified, where F1-scores peak, signifying the best equilibrium between precision and 
recall. 

The training and validation loss curves (Figure 11) provide crucial insights into the learning 
dynamics of the YOLOv8 model throughout the training process. The steady decline in box and 
classification loss indicates that the model successfully learned spatial representations and class 
features over successive epochs. However, noticeable fluctuations in validation loss at specific points 
suggest potential overfitting, particularly in later epochs, where the model begins to memorize specific 
training samples rather than generalize effectively to unseen data. This phenomenon is likely 
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exacerbated by a class imbalance in the dataset, as anomalies such as "Implants" and "Crowns" exhibit 
a higher frequency compared to "Caries" and "Periapical lesions," leading the model to prioritize 
learning dominant classes while struggling with underrepresented ones. Additionally, the periodic 
spikes in validation loss could indicate sensitivity to hard-to-classify instances, where the model 
oscillates between different decision boundaries when encountering ambiguous dental structures. 

 

Fig. 9. Precision-recall curve of the trained model 

 

Fig. 10. F1-Confidence curve of the trained model 
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Fig. 11. Loss curves 

The results from this study indicate that YOLOv8 is a powerful tool for automating the detection 
of dental anomalies in X-ray images [25]. The model performed exceptionally well in detecting 
"Implant" and "Root Canal Treatment" anomalies, typically more distinct in X-rays. However, 
detecting more subtle conditions such as "Caries" requires further improvement. Data augmentation 
and increasing the dataset size for underrepresented conditions are potential avenues for improving 
model performance. The precision-recall and F1-confidence curves further highlight the strengths and 
weaknesses of the model. 

The findings of this study demonstrate the potential of YOLOv8 as an advanced tool for automated 
dental anomaly detection, offering significant implications for dental radiology, AI-driven healthcare, 
and medical imaging. The model's high precision in detecting implants and crowns indicates strong 
feasibility for integration into clinical decision support systems, aiding dentists in rapid and accurate 
anomaly detection [26]. However, the lower performance on more subtle anomalies like caries and 
periapical lesions highlights the need for custom AI-driven preprocessing techniques tailored to 
enhance feature extraction for these conditions. 

Additionally, the automated detection approach introduced in this study can reduce diagnostic 
workload, minimize human error, and enable real-time dental screening in resource-limited settings. 
Future research should incorporate multimodal AI techniques, such as hybrid CNN-transformer 
architectures or self-supervised learning models, to refine detection accuracy. Expanding the dataset 
to include diverse patient demographics and X-ray variations can enhance model robustness, ensuring 
applicability across clinical scenarios. 

IV. Conclusion 

This study successfully demonstrated the application of YOLOv8 for automated dental anomaly 
detection in X-ray imaging, significantly advancing AI-driven dental diagnostics. The model achieved 
high accuracy in detecting anomalies such as Implants, Crowns, and Root Canal Treatments, 
indicating its potential for real-world implementation in clinical decision support systems. However, 
the results also highlighted detection challenges for Caries and Periapical lesions, suggesting that 
additional improvements in data augmentation, feature enhancement, and model optimization are 
necessary to enhance detection performance for these subtle conditions. 

A detailed evaluation using confusion matrices, precision-recall curves, F1-confidence curves, and 
training-validation loss curves provided critical insights into the model’s strengths and limitations. 
The label distribution and correlogram analyses further emphasized the impact of class imbalance and 
anomaly co-occurrence, which could mitigate by hierarchical classification techniques or cost-
sensitive learning approaches. Future work should explore hybrid deep learning architectures, domain-
specific preprocessing methods, and multimodal AI strategies to refine detection accuracy further. 
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From a practical standpoint, integrating YOLOv8 into dental healthcare systems can significantly 
reduce diagnostic workload, enhance detection efficiency, and minimize human error, particularly in 
resource-limited settings. The findings of this study contribute to the growing body of research on AI 
in medical imaging, paving the way for future innovations in automated dental anomaly detection and 
real-time AI-assisted diagnosis. 
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