Backpropagation Neural Network with Combination of Activation Functions for Inbound Traffic Prediction
Abstract
Full Text:
PDFReferences
M. Kihl, P. Ödling, C. Lagerstedt, and A. Aurelius, “Traffic analysis and characterization of internet user behavior,” 2010 Int. Congr. Ultra Mod. Telecommun. Control Syst. Work. ICUMT 2010, no. November, pp. 224–231, 2010.
V. J. Ribeiro, Z. L. Zhang, S. Moon, and C. Diot, “Small-time scaling behavior of Internet backbone traffic,” Comput. Networks, vol. 48, no. 3, pp. 315–334, 2005.
J. K. Taylor and C. Cihon, Statistical techniques for data analysis, second edition. 2004.
P. Purnawansyah, H. Haviluddin, R. Alfred, and A. F. O. Gaffar, “Network Traffic Time Series Performance Analysis Using Statistical Methods,” Knowl. Eng. Data Sci., vol. 1, no. 1, p. 1, 2017.
M. Hanif, F. Sami, M. Hyder, and M. I. Ch, “Hidden Markov Model for Time Series Prediction,” J. Asian Sci. Res., vol. 7, no. 5, pp. 196–205, 2017.
C. You & K. Chandra, “Time series models for Internet data traffic,” Conf. Local Comput. Networks, 164–171, 1999.
M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine learning for internet of things data analysis: a survey,” Digit. Commun. Networks, vol. 4, no. 3, pp. 161–175, 2018.
M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning for networking: Workflow, advances and opportunities,” arXiv, pp. 1–8, 2017.
E. S. Yu and C. Y. R. Chen, “Traffic prediction using neural networks,” IEEE Glob. Telecommun. Conf., vol. 2, no. May, pp. 991–995, 1993.
N. Boutaba, R. Salahuddin, M. A. Limam, N. Ayoubi, S. Shahriar and M. Solano, F, E. Aicedo, O, “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” J. Internet Serv. Appl., vol. 9, no. 5, pp. 1–99, 2018.
C. N. Babu and B. E. Reddy, “A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data,” Appl. Soft Comput. J., vol. 23, pp. 27–38, 2014.
C. Narendra Babu and B. Eswara Reddy, “Performance comparison of four new ARIMA-ANN prediction models on internet traffic data,” J. Telecommun. Inf. Technol., vol. 2015, no. 1, pp. 67–75, 2015.
J. Rynkiewicz, “Hybrid HMM / MLP models for time series prediction,” Eur. Symp. Artif. Neural Networks, no. April, pp. 455–462, 1999.
S. Amin, “Backpropagation – Artificial Neural Network (BP-ANN): Understanding gender characteristics of older driver accidents in West Midlands of United Kingdom,” Saf. Sci., vol. 122, no. July 2019, p. 104539, 2020.
Y. Ling, Q. Yue, C. Chai, Q. Shan, D. Hei, and W. Jia, “Nuclear accident source term estimation using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks,” Ann. Nucl. Energy, vol. 136, p. 107031, 2020.
J. N. Ogunbo, O. A. Alagbe, M. I. Oladapo, and C. Shin, “N-hidden layer artificial neural network architecture computer code: geophysical application example,” Heliyon, vol. 6, no. 6, p. e04108, 2020.
M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Neural network architecture based on gradient boosting for IoT traffic prediction,” Futur. Gener. Comput. Syst., vol. 100, pp. 656–673, 2019.
S. Wang, W. Zhu, Y. Shen, J. Ren, H. Gu, and X. Wei, “Temperature compensation for MEMS resonant accelerometer based on genetic algorithm optimized backpropagation neural network,” Sens. Actuators, A Phys., 316, p.112393, 2020.
G. Panchal, A. Ganatra, Y. P. Kosta, and D. Panchal, “Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers,” Int. J. Comput. Theory Eng., no. June 2017, pp. 332–337, 2011.
A. J. Thomas, M. Petridis, S. D. Walters, S. M. Gheytassi, and R. E. Morgan, “Two hidden layers are usually better than one,” Commun. Comput. Inf. Sci., vol. 744, pp. 279–290, 2017.
S. Narejo and E. Pasero, “An application of internet traffic prediction with deep neural network,” Smart Innov. Syst. Technol., vol. 69, pp. 139–149, 2017.
C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of trends in practice and research for deep learning,” arXiv, pp. 1–20, 2018.
DOI: http://dx.doi.org/10.17977/um018v4i12021p14-28
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Knowledge Engineering and Data Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.