### Hybrid Artificial Bee Colony and Improved Simulated Annealing for the Capacitated Vehicle Routing Problem

#### Abstract

#### Full Text:

PDF#### References

A. Islam, Y. Gajpal, and T. Y. Elmekkawy, “Hybrid particle swarm optimization algorithm for solving the clustered vehicle routing problem,” Appl. Soft Comput., vol. 110, p. 107655, 2021.

B. Yao, Q. Yan, M. Zhang, and Y. Yang, “Improved artificial bee colony algorithm for vehicle routing problem with time windows,” PLoS ONE 12 e0181275, pp. 1–18, 2017.

D. G. Rossit, D. Vigo, and F. Tohm, “Visual Attractiveness in Routing Problems : a Review,” Comput. Oper. Res., vol. 103, pp. 13–34, 2019.

R. Y. Pratama and W. F. Mahmudy, “Optimization Of Vehicle Routing Problem With Time Window ( Vrptw ) For Food Product Distribution Using Genetics Algorithm,” J. Inf. Technol. Comput. Sci., vol. 2, no. 2, pp. 77–84, 2017.

K. Leungsubthawee and S. Saranwong, “Multiple Depot Vehicle Routing Problems on Clustering Algorithms,” J. Math., pp. 205–216, 2018.

C. Koc and G. Laporte, “Vehicle Routing with Backhauls : Review and Research Perspectives,” Comput. Oper. Res., vol. 91, pp. 79–91, 2018.

F. Mar’i, W. F. Mahmudy, and P. B. Santoso, “An Improved Simulated Annealing for The Capacitated Vehicle Routing Problem (CVRP),” J. Ilm. Kursor, vol. 9, no. 3, pp. 119–128, 2018.

H. Awad, R. Elshaer, A. Abdelmo, and G. Nawara, “An Effective Genetic Algorithm for Capacitated Vehicle Routing Problem,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018, pp. 374–384.

C. Pornsing, “a Particle Swarm Optimization for the vehicle routing problem,” University of Rhode Island, 2014.

A. Rahmi, W. F. Mahmudy, and S. Anam, “A Crossover in Simulated Annealing for Population Initialization of Genetic Algorithm to Optimize the Distribution Cost,” J. Telecommun. Electron. Comput. Eng., vol. 9, no. 2–8, pp. 177–182, 2017.

P. Lu, L. Ye, Y. Zhao, B. Dai, M. Pei, and Y. Tang, “Review of meta-heuristic algorithms for wind power prediction : Methodologies , applications and challenges,” Appl. Energy, vol. 301, no. April, p. 117446, 2021.

V. Ganesan et al., “Quantum inspired meta-heuristic approach for optimization of genetic algorithm,” Comput. Electr. Eng., vol. 94, no. July, p. 107356, 2021.

D. Połap and M. Woźniak, “Meta-heuristic as manager in federated learning approaches for image processing purposes,” Appl. Soft Comput., vol. 113, p. 107872, 2021.

A. M. Altabeeb, A. M. Mohsen, and A. Ghallab, “An improved hybrid firefly algorithm for capacitated vehicle routing problem,” Appl. Soft Comput. J., vol. 84, p. 105728, 2019.

W. Y. Szeto, Y. Wu, and S. C. Ho, “An artificial bee colony algorithm for the capacitated vehicle routing problem,” Eur. J. Oper. Res., vol. 215, no. 1, pp. 126–135, 2011.

H. Ding, H. Cheng, and X. Shan, “Modified Artificial Bee Colony Algorithm for the Capacitated Vehicle Routing Problem,” in 2nd International Conference on Advances in Management Science and Engineering, 2018, pp. 197–201.

B. Akay, D. Karaboga, B. Gorkemli, and E. Kaya, “A survey on the Artificial Bee Colony algorithm variants for binary, integer and mixed integer programming problems,” Appl. Soft Comput., vol. 106, p. 107351, 2021.

A. A. Kondratenko, M. Bergström, M. Suominen, and P. Kujala, “An Artificial Bee Colony optimization-based approach for sizing and composition of Arctic offshore drilling support fleets considering cost- efficiency,” Sh. Technol. Res., pp. 1–24, 2022.

R. Szczepanski, K. Erwinski, M. Tejer, A. Bereit, and T. Tarczewski, “Optimal scheduling for palletizing task using robotic arm and artificial bee colony algorithm,” Eng. Appl. Artif. Intell., vol. 113, no. February, p. 104976, 2022.

L. Yang, A. Zhu, J. Shao, and T. Chi, “A knowledge-informed and pareto-based artificial bee colony optimization algorithm for multi-objective land-use allocation,” ISPRS Int. J. Geo-Information, vol. 7, no. 2, 2018.

B. K. Dedeturk and B. Akay, “Spam filtering using a logistic regression model trained by an artificial bee colony algorithm,” Appl. Soft Comput. J., vol. 91, p. 106229, 2020.

Y. Boudouaoui, H. Habbi, C. Ozturk, and D. Karaboga, “Solving differential equations with artificial bee colony programming,” Soft Comput., vol. 24, no. 23, pp. 17991–18007, 2020.

Y. Deng, H. Xu, and J. Wu, “Optimization of blockchain investment portfolio under artificial bee colony algorithm,” J. Comput. Appl. Math., vol. 385, p. 113199, 2021.

Ş. Öztürk, R. Ahmad, and N. Akhtar, “Variants of Artificial Bee Colony Algorithm and its application in Medical Image Processing,” Appl. Soft Comput., vol. 97, pp. 1–50, 2020.

L. Ge and E. Ji, “An improved artificial bee colony algorithm and its application in machine learning,” J. Phys. Conf. Ser., vol. 1650, no. 3, 2020.

F. Ye, D. Zhang, Y. Whar Si, X. Zeng, and T. T. Nguyen, “A hybrid algorithm for a Vehicle Routing Problem with Realistic Constraints,” Inf. Sci. (Ny)., vol. 394, no. 95, pp. 167–182, 2017.

X. Huang, X. Zeng, R. Han, and X. Wang, “An enhanced hybridized artificial bee colony algorithm for optimization problems,” IAES Int. J. Artif. Intell., vol. 8, no. 1, pp. 87–94, 2019.

Y. Wang, “Improving artificial bee colony and particle swarm optimization to solve TSP problem,” Proc. - 2018 Int. Conf. Virtual Real. Intell. Syst. ICVRIS 2018, pp. 179–182, 2018.

B. Rambabu, A. V. Reddy, and S. Janakiraman, “Hybrid Artificial Bee Colony and Monarchy Butterfly Optimization Algorithm ( HABC-MBOA ) -based cluster head selection for WSNs,” J. King Saud Univ. - Comput. Inf. Sci., 2019.

F. Barani and H. Nezamabadi-Pour, “BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems,” J. AI Data Min., vol. 6, no. 1, pp. 133–143, 2018.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecch, “Optimization by Simulated Annealing,” Science (80-. )., vol. 220, no. 4598, pp. 671–680, 2007.

E. J. Kusuma, I. Pantiawati, and S. Handayani, “Melanoma Classification based on Simulated Annealing Optimization Neural Network,” Knowl. Eng. Data Sci., vol. 4, no. 2, pp. 97–104, 2021.

H. Lv, X. Chen, and X. Zeng, “Optimization of micromixer with Cantor fractal baffle based on simulated annealing algorithm,” Chaos, Solitons and Fractals, vol. 148, p. 111048, 2021.

J. Adler and E. N. Ribak, “Simulated annealing in application to telescope phasing,” Phys. A Stat. Mech. its Appl., vol. 572, p. 125900, 2021.

X. Liu et al., “Simulated annealing for optimization of graphs and sequences,” Neurocomputing, vol. 465, pp. 310–324, 2021.

S. Dhagat and S. E. Jujjavarapu, “Simulated annealing and artificial neural network as optimization tools to enhance yields of bioemulsifier and exopolysaccharides by thermophilic Brevibacillus borstelensis,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105499, 2021.

S. Peng, D. Rippel, M. Becker, and H. Szczerbicka, “Scheduling of offshore wind farm installation using simulated annealing,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 325–330, 2021.

G. Çetin and A. Keçebaş, “Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant,” Renew. Energy, vol. 172, pp. 968–982, 2021.

F. Mar’i, W. F. Mahmudy, and P. B. Santoso, “Hybrid Particle Swarm Optimization and Simulated Annealing for Capacitated Vehicle Routing Problem,” Proc. 2019 4th Int. Conf. Sustain. Inf. Eng. Technol. SIET 2019, pp. 66–71, 2019.

İ. İlhan, “An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem,” Swarm Evol. Comput., vol. 64, no. March, p. 100911, 2021.

B. Morales-Castañeda, D. Zaldívar, E. Cuevas, O. Maciel-Castillo, I. Aranguren, and F. Fausto, “An improved Simulated Annealing algorithm based on ancient metallurgy techniques,” Appl. Soft Comput. J., vol. 84, p. 105761, 2019.

T. Yuxin, Y. Hairong, G. Hang, S. Yuying, and L. Gang, “Application of SVR optimized by Modified Simulated Annealing (MSA-SVR) air conditioning load prediction model,” J. Ind. Inf. Integr., vol. 15, no. January, pp. 247–251, 2018.

P. Augerat et al., “Computational Results With a Branch-and-Cut Code for the Capacitated Vehicle Routing Problem,” no. May 2014, pp. 1–24, 1995.

E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, “New benchmark instances for the Capacitated Vehicle Routing Problem,” Eur. J. Oper. Res., vol. 257, no. 3, pp. 845–858, 2017.

F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, and X. L. Shen, “A hybrid particle swarm optimization algorithm using adaptive learning strategy,” Inf. Sci. (Ny)., vol. 436–437, pp. 162–177, 2018.

DOI: http://dx.doi.org/10.17977/um018v5i22022p109-121

### Refbacks

- There are currently no refbacks.

Copyright (c) 2023 Knowledge Engineering and Data Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.