Sentiment Analysis of Amazon Product Reviews using Supervised Machine Learning Techniques
Abstract
Full Text:
PDFReferences
G. Taher, “E-Commerce: Advantages and Limitations,” Int. J. Acad. Res. Accounting, Financ. Manag. Sci., vol. 11, no. 1, Feb. 2021.
A. Datta, “The digital turn in postcolonial urbanism: Smart citizenship in the making of India’s 100 smart cities,” Trans. Inst. Br. Geogr., vol. 43, no. 3, pp. 405–419, Sep. 2018.
A. S. Rathor, A. Agarwal, and P. Dimri, “Comparative Study of Machine Learning Approaches for Amazon Reviews,” Procedia Comput. Sci., vol. 132, pp. 1552–1561, 2018.
S. N. Ahmad and M. Laroche, “Analyzing electronic word of mouth: A social commerce construct,” Int. J. Inf. Manage., vol. 37, no. 3, pp. 202–213, Jun. 2017.
Z. Xiang, Q. Du, Y. Ma, and W. Fan, “A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism,” Tour. Manag., vol. 58, pp. 51–65, Feb. 2017.
J. Wang, M. D. Molina, and S. S. Sundar, “When expert recommendation contradicts peer opinion: Relative social influence of valence, group identity and artificial intelligence,” Comput. Human Behav., vol. 107, p. 106278, Jun. 2020.
Zhu Zhang, “Weighing Stars: Aggregating Online Product Reviews for Intelligent E-commerce Applications,” IEEE Intell. Syst., vol. 23, no. 5, pp. 42–49, Sep. 2008.
G. Kaur and A. Singla, “Sentimental analysis of Flipkart reviews using Naïve Bayes and decision tree algorithm,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 5, no. 1, pp. 148–153, 2016.
U. R. Babu and N. Reddy, “Sentiment analysis of reviews for e-shopping websites,” Int. j. eng. Comput. sci, vol. 6, no. 1, p. 19966, 2017.
S. Khomsah and Agus Sasmito Aribowo, “Text-Preprocessing Model Youtube Comments in Indonesian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 4, pp. 648–654, Aug. 2020.
A. I. Kadhim, “An Evaluation of Preprocessing Techniques for Text Classification,” Int. J. Comput. Sci. Inf. Secur., vol. 16, no. 6, pp. 22–32, 2018.
M. Castelli, L. Vanneschi, and Á. R. Largo, “Supervised learning: Classification,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. 2, pp. 342–349, 2018.
M. Nabipour, P. Nayyeri, H. Jabani, S. S., and A. Mosavi, “Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; a Comparative Analysis,” IEEE Access, vol. 8, pp. 150199–150212, 2020.
S. Hota and S. Pathak, “KNN classifier based approach for multi-class sentiment analysis of twitter data,” Int. J. Eng. Technol, vol. 7, no. 3, pp. 1372–1375, 2018.
D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,” PeerJ, vol. 7, p. e6201, Jan. 2019.
O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 4, Jul. 2018.
Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “A deep learning-based multi-model ensemble method for cancer prediction,” Comput. Methods Programs Biomed., vol. 153, pp. 1–9, Jan. 2018.
B. Choubin, E. Moradi, M. Golshan, J. Adamowski, F. Sajedi-Hosseini, and A. Mosavi, “An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines,” Sci. Total Environ., vol. 651, pp. 2087–2096, Feb. 2019.
T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation,” Biomed. Signal Process. Control, vol. 52, pp. 456–462, Jul. 2019.
A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of Sentimental Reviews Using Machine Learning Techniques,” Procedia Comput. Sci., vol. 57, pp. 821–829, 2015.
DOI: http://dx.doi.org/10.17977/um018v5i12022p101-108
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Knowledge Engineering and Data Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.