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 This study explores the application of the AdaBoost-SVM model for chronic kidney 

disease (CKD) detection, emphasising its relevance as a teaching tool in medical 

education. By leveraging a dataset of 400 instances with 25 clinical features, this research 

demonstrates how machine learning (ML) techniques can address the critical need for 

accurate and early diagnosis in clinical settings. The AdaBoost-SVM model achieved 

remarkable performance, with an overall accuracy of 96%. The study highlights how 

such models can serve as practical examples for students and educators to understand 

the integration of ML into healthcare better, bridging the gap between theoretical 

learning and real-world applications. Recommendations are provided for using this case 

study as an educational resource to enhance understanding of hybrid machine learning 

approaches in medical diagnostics. 
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I. INTRODUCTION 

Chronic Kidney Disease (CKD) is a significant global 
health concern that impacts millions of people around the globe 
[1]. Recent figures indicate that CKD is projected to impact 
around 10% of the worldwide population. A considerable 
number of these persons are likely to advance to end-stage renal 
disease (ESRD), which necessitates dialysis or transplantation 
[2]. CKD has effects that go beyond the persons it affects, 
placing significant financial strain on healthcare systems and 
diminishing the quality of life for patients and their families [3]. 
As the incidence of risk factors such as diabetes, hypertension, 
and ageing populations increases, the prevalence of CKD is 
expected to rise, making it a critical area of concern for public 
health authorities and medical professionals alike [4]. 

Early detection and accurate classification of CKD are 
paramount in mitigating its adverse effects and improving 
patient outcomes [5]. Timely diagnosis allows for the 
implementation of therapeutic interventions that can slow 

disease progression, manage symptoms, and prevent 
complications [6]. Accurate classification of CKD stages is 
essential for tailoring treatment plans to individual patient 
needs and ensuring optimal use of healthcare resources [7]. 
Advances in machine learning and data analytics offer 
promising tools for enhancing the diagnostic accuracy and 
efficiency of CKD management [8]. By leveraging these 
technologies, healthcare providers can better identify at-risk 
individuals, monitor disease progression, and deliver 
personalised care, ultimately reducing the burden of CKD on 
society [9]. 

The classification of CKD presents significant challenges 
due to its complex and multifactorial nature [7]. Traditional 
diagnostic methods often rely on a combination of laboratory 
tests, clinical evaluations, and patient histories, which can be 
time-consuming and prone to human error [10]. Additionally, 
CKD symptoms can be subtle and nonspecific in the early 
stages, leading to delayed diagnosis and treatment [11]. 
Variability in clinical practices and the subjective interpretation 



of test results further complicate the accurate classification of 
CKD [12]. These challenges underscore the urgent need for 
more reliable and efficient diagnostic tools that can assist 
healthcare professionals in identifying CKD accurately and at 
an early stage [13]. 

In this context, the integration of machine learning models 
into medical diagnostics holds great promise [14]. Machine 
learning algorithms, such as AdaBoost and Support Vector 
Machines (SVM), have demonstrated remarkable potential in 
processing large datasets, identifying patterns, and making 
accurate predictions [9]. These models can analyse a multitude 
of clinical parameters simultaneously, offering a more 
comprehensive and objective approach to CKD classification 
[15]. Effective machine learning models can enhance the 
precision of diagnoses, reduce the time required for assessment, 
and provide consistent results across diverse patient populations 
[16]. By leveraging these advanced computational techniques, 
healthcare systems can improve the early detection and 
management of CKD, ultimately leading to better patient 
outcomes and more efficient use of medical resources [17]. 

Current methods for classifying CKD encompass both 
traditional statistical techniques and innovative machine-
learning approaches. Traditional methods often rely on logistic 
regression, decision trees, and linear discriminant analysis, 
which use predefined equations and criteria to categorise CKD 
based on clinical parameters such as glomerular filtration rate, 
blood pressure, and proteinuria levels [16]. While these 
methods have been instrumental in CKD diagnosis, they are 
sometimes limited by their inability to handle complex, non-
linear relationships within the data [7]. On the other hand, the 
latest progress in machine learning provides more advanced 
tools, such as neural networks, random forests, and SVM. These 
tools are capable of handling massive datasets, discovering 
concealed patterns, and delivering more precise predictions 
[18]. These machine learning models, particularly when 
combined with ensemble techniques like AdaBoost, enhance 
diagnostic precision and allow for the integration of diverse 
clinical features, ultimately leading to more effective CKD 
management and improved patient outcomes [19]. 

AdaBoost, also known as Adaptive Boosting, is an effective 
ensemble learning method that aims to enhance the 
performance of weak classifiers by amalgamating them into a 
robust one [20]. The fundamental concept underlying AdaBoost 
is to train a set of weak classifiers consecutively, with each one 
specifically targeting the errors made by the previous 
classifiers. The outputs of these classifiers are then combined 
using a weighted majority vote [21]. This approach enhances 
the overall accuracy and robustness of the model [22]. In 
medical diagnostics, AdaBoost has been successfully applied to 
various tasks, such as tumour detection, disease progression 
prediction, and risk stratification, by effectively dealing with 
the complexity and variability inherent in medical data [23]. 

SVM is a highly prominent technique in the field of machine 
learning, known for its exceptional performance in solving 
classification issues [24]. The SVM algorithm operates by 
identifying the most favourable hyperplane that effectively 
separates data points belonging to distinct classes while 
maximising the distance between the hyperplane and the 

nearest data points [25]. This makes SVM highly effective in 
high-dimensional spaces and suitable for medical diagnostics, 
where the differentiation between classes can be subtle and 
complex [26]. SVMs have been widely used to diagnose 
diseases such as cancer, diabetes, and cardiovascular 
conditions, demonstrating their capability to handle large and 
diverse datasets with precision [27]. 

Combining AdaBoost and SVM leverages the strengths of 
both techniques, leading to enhanced classification 
performance [21]. Studies have shown that the AdaBoost-SVM 
hybrid model can significantly improve diagnostic accuracy by 
compensating for the individual weaknesses of each method 
[28]. For instance, AdaBoost's ability to focus on difficult cases 
and SVM's proficiency in high-dimensional classification 
complement each other well [27]. Research in this area has 
reported notable successes, such as improved detection rates in 
breast cancer screening and more accurate predictions of 
diabetic complications [20]. These findings highlight the 
potential of hybrid models in advancing medical diagnostics, 
offering more reliable and efficient tools for early disease 
detection and management [29]. 

The main aim of this study is to create a strong classification 
model for CKD using the AdaBoost-SVM (Support Vector 
Machine) method. Our objective is to utilise the benefits of 
AdaBoost and SVM to develop a model that can effectively and 
precisely detect and categorise CKD in patients using a wide 
range of clinical characteristics. To thoroughly assess the 
effectiveness of this hybrid model, we will utilize a confusion 
matrix and a classification report. These tools will 
comprehensively analyse the model's accuracy, precision, 
recall, and F1-score, evaluating its efficacy in differentiating 
between CKD and non-CKD cases. 

This innovative research introduces a hybrid AdaBoost-
SVM model specifically designed to classify CKD. This novel 
methodology combines the boosting powers of AdaBoost, 
which improve the performance of weak classifiers, with the 
robust classification capacity of SVM. Furthermore, the study 
highlights the importance of implementing a meticulous data-
cleaning procedure to guarantee high-quality input data. Our 
goal is to improve the accuracy and dependability of the model 
by carefully managing missing values and guaranteeing proper 
formatting of all numeric features. This approach addresses 
frequent challenges in medical datasets that might impede the 
performance of machine learning algorithms. 

Our study contributes significantly to both medical 
diagnostics and education by thoroughly evaluating the 
effectiveness of the AdaBoost-SVM model in classifying 
Chronic Kidney Disease (CKD) while highlighting its strengths 
and areas for improvement. This dual focus not only 
demonstrates the practical implications of hybrid machine 
learning models in healthcare but also emphasises their broader 
potential for enhancing diagnostic precision across diverse 
medical conditions. Positioned as both a technical achievement 
and a pedagogical tool, the AdaBoost-SVM methodology 
serves as a compelling case for interdisciplinary education, 
enabling educators to engage students in exploring the 
intersection of technology and healthcare. By analysing its 
application, educators can help students grasp the importance 



of data-driven decision-making and develop a deeper 
understanding of hybrid models that combine boosting and 
support vector machines to address complex clinical 
challenges. Ultimately, this work lays a strong foundation for 
future innovations in machine learning applications, aiming to 
improve patient outcomes and advance medical education and 
practice. 

II. METHOD 

A. Dataset Description 

The dataset used in this study is the Chronic Kidney Disease 
dataset obtained from Kaggle, which contains extensive clinical 
data for 400 patients. The dataset has 25 properties that include 
a range of medical indicators, such as red blood cell count, 
white blood cell count, blood pressure, specific gravity, 
albumin, and other pertinent laboratory test results and 
demographic information. These characteristics offer a 
comprehensive perspective on the health condition of every 
patient, enabling thorough examination and training of models. 
The goal variable, 'classification', determines whether chronic 
kidney disease is present ('ckd') or absent ('notckd'). It is a 
crucial factor in predictive modelling as it represents the 
predicted result. This extensive dataset enables the creation and 
verification of machine learning models designed to detect and 
categorise CKD precisely, therefore enhancing diagnostic 
procedures in the healthcare field. 

B. Data preprocessing 

Data preprocessing in this study involves meticulously 
handling missing values and ensuring the proper format of 
numerical data to enhance model accuracy. To address the issue 
of missing values, any row containing NaN values is entirely 
removed, thereby eliminating incomplete data that could skew 
the analysis and degrade model performance. This stringent 
approach ensures that the dataset remains robust and reliable. 
Additionally, all numeric features are converted to floating-
point numbers, standardising the data format and facilitating 
seamless integration into the machine-learning pipeline. This 
step is crucial for the AdaBoost-SVM model to interpret and 
process the clinical parameters accurately, ultimately leading to 
a more precise classification of chronic kidney disease. 

C. Model Development 

This research uses the AdaBoost-SVM algorithm to classify 
CKD accurately. AdaBoost, also known as Adaptive Boosting, 
is a technique that combines several "weak learners" to create a 
powerful "strong learner." We use SVM as the weak learners in 
this context. The AdaBoost process involves iterative training, 
where each model successively focuses on the examples that 
the previous models misclassified. 

1) AdaBoost (Adaptive Boosting) 
The AdaBoost process begins with initialising the weights 

for each instance in the dataset. Each instance 𝑖 is assigned an 

initial weight 𝑤𝑖 =
1

𝑁
, where 𝑁 Is the total number of instances. 

At each iteration 𝑡, the SVM model ℎ𝑡(𝑥) is trained using the 
current weights 𝑤𝑖 . The weighted error of the model is 
calculated in Equation 1. 

𝜖𝑡 =∑𝑤𝑖𝐼(𝑦𝑖 ≠ ℎ𝑡(𝑥𝑖))

𝑁

𝑖=1

 (1) 

where 𝐼 is an indicator function that is 1 if the prediction is 
incorrect and 0 if it is correct. Equation 2 computes the weight 
of the weak learner. 

α𝑡 =
1

2
ln (

1 − ϵ𝑡
ϵ𝑡

) (2) 

The weights of each instance are updated based on the 
model's performance in Equation 3. 

𝑤𝑖 ← 𝑤𝑖 exp(−α𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) (3) 

These weights are then normalized so that the total weight 
remains 1. The final model 𝐻(𝑥) is a weighted combination of 
all the weak learners, as calculated in Equation 4. 

𝐻(𝑥) = sign(∑α𝑡ℎ𝑡(𝑥)

𝑇

𝑡=1

) (4) 

2) Support Vector Machine (SVM) 
SVM is a classification algorithm that seeks the optimal 

hyperplane, separating the data into two classes with the 
maximum margin. For a training dataset 
(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁) with 𝑦𝑖 ∈ {−1,+1}, SVM 
minimises the objective function as calculated in Equation 5. 

min
𝑤,𝑏

1

2
|𝒘|2 (5) 

subject to the constraint 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1. For computational 
efficiency, this problem is often transformed into its dual form, 
involving Lagrange multipliers α𝑖 as formulated in Equation 6. 

max
α

∑α𝑖

𝑁

𝑖=1

−
1

2
∑∑α𝑖α𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ⋅ 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 (6) 

subject to ∑ α𝑖𝑦𝑖
𝑁
𝑖=1  = 0 and 0 ≤ α𝑖 ≤ 𝐶. 

3) AdaBoost-SVM 
In this research, the AdaBoost-SVM algorithm combines 

AdaBoost's boosting process with SVM's classification 
strength. Each weak learner ℎ𝑡(𝑥) is an SVM model trained on 
a subset of the data with weights provided by AdaBoost. The 
boosting process ensures that the SVM model in the next 
iteration focuses on the examples that are difficult to classify. 
The final model 𝐻(𝑥) Is a weighted combination of several 
SVM models, with each model's weight determined by its 
performance during training. 

The AdaBoost-SVM model leverages the advantages of 
both algorithms to effectively manage the intricacies of medical 



data, leading to enhanced precision and dependability in 
predicting CKD diagnosis. This combination enables the model 
to systematically rectify classification errors, guaranteeing that 
the ultimate model results from a meticulous training procedure 
centred on enhancing accuracy. 

D. Evaluation Metrics 

A confusion matrix is a tabular representation used to assess 
the effectiveness of a classification model by comparing the 
observed classifications with the expected classifications. The 
system comprises four essential elements: True Positive (TP) 
refers to the number of instances correctly identified as the 
positive class, such as correctly identifying patients with CKD. 
False Positive (FP) refers to instances incorrectly identified as 
the positive class, such as predicting CKD when the patient 
does not have it (also known as Type I error). True Negative 
(TN) represents the number of instances correctly identified as 
the negative class, such as correctly identifying patients without 
CKD. False Negative (FN) indicates instances incorrectly 
identified as the negative class, such as predicting no CKD 
when the patient has it (also known as Type II error). 

We can calculate Precision, Recall, and F1-Score from this 
confusion matrix as in Equations 7-9. 

 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

− = 2 ×
 × 

 + 
 (9) 

III. RESULT AND DISCUSSION 

A. Model Performance 

The effectiveness of the classification model can be 
comprehensively evaluated using the confusion matrix, which 
offers a concise and complete overview of the model's 
predictions compared to the actual results. Fig. 1 displays the 
confusion matrix, which shows the distribution of true positive, 
true negative, false positive, and false negative predictions for 
the 'ckd' and 'notckd' classes. This matrix reveals that out of 200 
instances, 121 'notckd' cases were correctly identified, while 
only 7 needed to be misclassified. Similarly, for the 'ckd' class, 
the model accurately predicted 71 instances, with just 1 case 
incorrectly labeled. This visualisation highlights the model's 
accuracy and reliability in diagnosing chronic kidney disease. 
It underscores the importance of precise and consistent 
predictions in clinical decision-making, ultimately contributing 
to better patient outcomes and more effective healthcare 
interventions. 

 

 

Fig. 1. Confusion matrix 

The confusion matrix depicted in Fig. 1 provides a detailed 
evaluation of the classification model's performance in 
diagnosing CKD. The model demonstrated high accuracy, 
correctly identifying 121 out of 128 'notckd' cases and 71 out of 
72 'ckd' cases. This results in a very low false positive rate of 
approximately 5.5% (7 out of 128) and an even lower false 
negative rate of about 1.4% (1 out of 72). The high true positive 
and true negative rates indicate that the model is highly 
effective in distinguishing between CKD and non-CKD 
patients, which is crucial for ensuring timely and appropriate 
medical intervention. 

Moreover, these results have significant implications for 
clinical practice. The low false negative rate means that the 
likelihood of missing CKD diagnoses is minimal, reducing the 
risk of untreated progression of the disease. Similarly, the low 
false positive rate ensures that patients are not subjected to 
unnecessary stress or further invasive tests due to incorrect 
CKD diagnoses. Overall, the confusion matrix highlights the 
robustness of the AdaBoost-SVM model, suggesting that it can 
be a reliable tool for aiding healthcare professionals in the 
accurate and early diagnosis of CKD, ultimately leading to 
improved patient management and outcomes. 

The detailed classification report presented in Table 1 
comprehensively evaluates the model's performance across 
various metrics, including precision, recall, and F1-score, for 
both the 'notckd' and 'ckd' classes. This report highlights the 
model's exceptional ability to accurately predict 'notckd' cases 
with a precision of 0.99 and a recall of 0.95, resulting in an 
impressive F1-score of 0.97. Similarly, for 'ckd' cases, the 
model achieves a precision of 0.91 and an outstanding recall of 
0.99, leading to an F1-score of 0.95. The overall accuracy of 
0.96, along with macro and weighted averages of 0.96, 
underscores the model's robustness and reliability in diagnosing 
chronic kidney disease. These metrics validate the AdaBoost-
SVM approach's effectiveness and demonstrate its potential to 
enhance clinical decision-making and patient outcomes 
significantly. 

 



TABLE I.  CLASSIFICATION REPORT 

             Precision Recall F1-Score Support 

notckd 0.99 0.95 0.97 128 
ckd 0.91 0.99 0.95 72 

accuracy 
  

0.96 200 

macro avg 0.95 0.97 0.96 200 
weighted avg 0.96 0.96 0.96 200 

 

The classification report shown in Table 1 provides a 
detailed breakdown of the model's performance, illustrating its 
high effectiveness in classifying CKD. For the 'notckd' class, 
the model achieves a near-perfect precision of 0.99, indicating 
that almost all instances predicted as 'notckd' are correct. The 
recall of 0.95 for this class suggests the model successfully 
identifies most actual 'notckd' cases, with very few being 
missed. This high precision and recall combination results in an 
F1-score of 0.97, reflecting the model's balanced performance 
in minimising false positives and false negatives for the 'notckd' 
class. 

In the case of the 'ckd' class, the model also demonstrates 
strong performance, with a precision of 0.91 and an outstanding 
recall of 0.99. The slightly lower precision indicates a small 
number of false positives, where non-CKD cases are incorrectly 
labelled as CKD. However, the extremely high recall value 
shows the model's exceptional ability to detect nearly all true 
CKD cases, ensuring that few CKD patients are overlooked. 
This is particularly critical in a medical context where early and 
accurate diagnosis is essential for effective treatment and 
management. The F1-score of 0.95 for the 'ckd' class signifies 
a well-rounded performance. Overall, the high accuracy of 
0.96, along with the strong macro and weighted averages, 
underscores the model's reliability and robustness in real-world 
clinical settings, highlighting its potential to significantly 
improve diagnostic processes and patient outcomes in the 
healthcare industry. 

B. Summarization of Key Findings 

This research addresses the critical challenge of accurately 
classifying CKD using advanced machine learning techniques, 
specifically the hybrid AdaBoost-SVM model. The major 
findings indicate that the model exhibits exceptional 
performance, achieving an overall accuracy of 96%. For the 
'notckd' class, the model attained a precision of 0.99 and a recall 
of 0.95, resulting in an F1-score of 0.97, while for the 'ckd' 
class, it achieved a precision of 0.91, a recall of 0.99, and an F1-
score of 0.95. These results highlight the model's robustness and 
reliability in distinguishing between CKD and non-CKD cases, 
demonstrating its potential to enhance early diagnosis and 
treatment significantly, improving patient outcomes and 
optimising healthcare resources. 

C. Result Interpretations 

The results reveal high precision and recall patterns for both 
'ckd' and 'notckd' classes, showcasing the AdaBoost-SVM 
model's ability to classify chronic kidney disease accurately. 
The exceptionally high recall of 0.99 for the 'ckd' class indicates 
that the model effectively identifies almost all true CKD cases, 
which is crucial for timely and accurate diagnosis. While still 
strong, the slightly lower precision of 0.91 for the 'ckd' class 

suggests a minor presence of false positives, which could be 
attributed to overlapping symptoms or measurement errors. 
These results align well with the expectations of leveraging 
ensemble methods to enhance classification performance. 
Unexpectedly, the model achieved near-perfect precision for 
the 'notckd' class, possibly due to the distinctiveness of non-
CKD features in the dataset. Alternative explanations for these 
findings could involve the inherent quality and preprocessing 
of the dataset or the specific tuning of the model parameters, 
underscoring the importance of comprehensive data preparation 
and parameter optimisation in machine learning applications. 

D. Research Implications 

The implications of this research are profound, emphasising 
the relevance of advanced machine learning techniques in 
medical diagnostics and education. By successfully applying 
the AdaBoost-SVM model to classify chronic kidney disease 
(CKD) with high accuracy, this study not only confirms the 
effectiveness of hybrid models in improving diagnostic 
precision but also highlights their educational potential. The 
exceptional performance metrics, particularly the high recall for 
CKD detection, underscore the model's capability to enhance 
early diagnosis and patient management, aligning with the 
critical need for early intervention in CKD treatment. This 
research can serve as a foundational resource for 
interdisciplinary teaching, bridging the gap between technology 
and healthcare. By incorporating the CKD case study into 
educational curricula, educators can offer students hands-on 
experience with real-world data, enabling them to explore the 
practicalities of hybrid machine learning models. Such 
integration can enrich training programs for both technology 
students, who gain insights into healthcare applications, and 
healthcare professionals, who develop an understanding of 
data-driven diagnostic tools. Moreover, this approach 
demonstrates the importance of rigorous data cleaning and 
preprocessing, offering a replicable framework that students 
and professionals can apply to future studies or clinical 
practices. Ultimately, this research advances healthcare 
analytics, supports educational innovation, and lays the 
groundwork for integrating machine learning models into 
clinical workflows and academic settings, fostering improved 
patient outcomes and optimised healthcare resources. 

E. Research Limitations 

Although this study offers new insights into the 
categorisation of chronic renal illness using the AdaBoost-SVM 
model, it is crucial to recognise its limitations. The primary 
constraint is in the minimal and particular dataset, which may 
not encompass the complete range of variations observed in 
more significant and more diverse populations. This could 
impact the generalizability of the results. Additionally, the strict 
data cleaning process, which involved removing all rows with 
missing values, may have excluded potentially informative 
cases. Despite these limitations, the high accuracy and strong 
performance metrics indicate that the model effectively 
addresses the research question, demonstrating its potential for 
accurate CKD classification. The robust methodology and 
consistent results suggest that the findings are valid and can 
inform future research and applications while highlighting areas 



where further investigation and broader data collection could 
enhance the model's applicability and reliability. 

F. Recommendations for Future Research 

To effectively deploy the AdaBoost-SVM model, it is 
advisable to incorporate it into clinical decision support 
systems. This integration will assist healthcare workers in 
diagnosing chronic kidney disease promptly and accurately. 
Future research should focus on utilising larger, more diverse 
datasets encompassing a wider range of demographic and 
clinical variations to enhance its applicability. Additionally, 
exploring different data imputation techniques to handle 
missing values rather than simply removing incomplete rows 
could preserve valuable information and improve model 
performance. Further studies could also investigate integrating 
other advanced machine learning algorithms and ensemble 
methods to refine the model’s accuracy and robustness. 
Ultimately, collaboration between data scientists and healthcare 
practitioners will be crucial in tailoring these models to real-
world clinical settings, ensuring they provide actionable 
insights and improve patient outcomes. 

IV. CONCLUSION 

In conclusion, this study demonstrates the effectiveness of 
the AdaBoost-SVM model in accurately classifying chronic 
kidney disease, achieving high precision, recall, and overall 
accuracy while also showcasing its potential as an educational 
tool. The rigorous data cleaning and preprocessing steps 
ensured the reliability of the input data, contributing to the 
model's robust performance and making it an exemplary case 
for interdisciplinary teaching. Despite some limitations, such as 
the use of a relatively small dataset and the exclusion of 
incomplete data, the findings offer valuable insights into the 
application of hybrid machine learning models in enhancing 
both medical diagnostics and educational practices. This 
research not only validates the application of advanced 
algorithms in healthcare but also highlights their relevance in 
academic settings, encouraging the integration of such models 
into curricula for medical and technology students. By paving 
the way for future studies and educational innovations, this 
work aims to improve early diagnosis, patient management, and 
the training of future professionals in data-driven healthcare 
solutions. 
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