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 Urban air pollution, mainly carbon monoxide (CO), poses significant health risks. 

This research introduces an educational framework through the application of a 

Bidirectional Gated Recurrent Unit (Bi-GRU) model for predicting CO levels. The study 

highlights the model's ability to forecast CO concentrations in Yogyakarta, providing 

practical insights to support environmental education and awareness among students, 

researchers, and policymakers. With input lengths of 48, 96, and 144 hours, the model 

achieved optimal results with an R² of 0.99, demonstrating its reliability in capturing CO 

fluctuations. These findings not only advance machine learning applications for air 

quality monitoring but also serve as a valuable tool for integrating environmental topics 

into educational curricula. 
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I. INTRODUCTION 

Air quality monitoring, particularly of carbon monoxide 
(CO) levels, is crucial in addressing public health risks in urban 
areas [1]. CO is a colourless, odorless gas released mainly from 
vehicle emissions and industrial activities, contributing to a 
significant share of air pollution in cities [2], [3]. According to 
the World Health Organization, high CO exposure can lead to 
severe cardiovascular and respiratory problems, affecting 
vulnerable populations such as children and the elderly [4]. In 
densely populated areas, CO levels can surpass safe limits, 
causing thousands of premature deaths annually [5]. Thus, 
continuous monitoring of CO levels is essential to mitigate 
health risks and guide environmental policies for cleaner air [6]. 

The impact of CO pollution on public health has been well-
documented, showing a clear correlation between air pollution 
spikes and hospital admissions [7]. For example, in major cities 
worldwide, increases in CO levels are linked with heightened 
emergency visits for respiratory distress [8]. With urbanisation 
and industrialization on the rise, effective CO monitoring is 
imperative to protect populations from escalating health 

hazards [9]. Cities implementing advanced air quality 
monitoring can promptly detect and address hazardous CO 
levels, potentially reducing the burden of disease and improving 
residents’ quality of life [10]. Therefore, the prioritisation of 
CO monitoring in public health frameworks is a proactive step 
toward sustainable urban living and population well-being [11]. 

Machine learning models have become instrumental in 
enhancing the prediction accuracy of pollutant levels within 
environmental applications. Research shows that ensemble 
learning techniques can significantly improve predictions in 
ecological science, though these models demand substantial 
computational resources [13]. Multi-task learning and 
regularisation techniques further refine predictive capabilities, 
especially in hourly air pollution predictions, despite being 
limited by training data quality and specific regularisation 
choices [14]. Additionally, the ANFIS-WELM model, which 
integrates an Adaptive Neuro-Fuzzy Inference System with a 
Weighted Extreme Learning Machine, provides high accuracy 
for multi-step pollutant predictions and excels in real-time 
performance [15]. However, this model's effectiveness is 



hindered by the complexity of managing input fuzziness, 
indicating a trade-off between accuracy and complexity. 

Integrating machine learning with Chemical Transport 
Models (CTM) has been shown to improve gridded prediction 
accuracy, mainly through techniques like the Ensemble Kalman 
Filter and CTM Fusion. This approach leverages machine 
learning and CTM to enable 3D spatial predictions, though it is 
constrained by a dependency on ensemble CTM for error 
covariance adjustments [16]. A hybrid ensemble model using 
stacking techniques further enhances the accuracy of air 
pollution forecasts over time by combining multiple predictive 
models despite its increased complexity and high data 
processing demands [17]. Additionally, the CNN+LSTM 
hybrid deep learning model excels in predicting pollutant 
concentrations across multiple locations with spatial-temporal 
precision, though it requires fine-tuning parameters specific to 
each location for optimal accuracy [18]. Together, these 
approaches highlight the advancements and challenges in 
applying machine learning to environmental predictions in 
complex, dynamic systems. 

Feature selection has proven effective in enhancing 
accuracy for multi-pollutant predictions, utilising techniques 
like Multi-Target Regression and Feature Ranking to achieve 
efficient selection with high precision. However, this approach 
faces challenges due to sensitivity to extreme values and 
prolonged runtime when applied to large datasets [19]. 
Additionally, optimised deep learning models, particularly the 
1D CNN + LSTM hybrid, demonstrate significant latency 
reduction, making them well-suited for deployment on 
resource-limited edge devices. While this model offers 
promising performance in low-latency applications, its use is 
currently restricted to PM2.5 predictions and depends on 
specific hardware capabilities of edge devices [20]. These 
findings underscore the balance between accuracy, 
computational demands, and hardware limitations in 
environmental pollutant prediction. 

The gradient-boosted tree model has shown effectiveness in 
enhancing spatial and temporal modelling for pollutants like 
NO₂ and O₃, combining accuracy with computational efficiency 
on large datasets. This model’s limitations arise in non-
pollutant dense regions, where its effectiveness decreases [21]. 
Meanwhile, the Kalman-attention-LSTM model has improved 
predictions for the Air Quality Index (AQI) by incorporating a 
Kalman filter, attention mechanism, and LSTM, providing 
higher accuracy and adaptability for AQI and pollutant 
forecasting. However, this model requires recalibration when 
applied to different pollutant types, which can limit its 
versatility [12]. Both approaches demonstrate advancements in 
predictive accuracy but also highlight the ongoing trade-offs in 
model adaptability and specificity for diverse environmental 
conditions. 

Previous models for air quality sensor data often struggle 
with effectively capturing temporal patterns due to limitations 
in handling complex time series data. Standard machine 
learning models, such as linear regression or basic neural 
networks, lack the sophistication to accurately model long-term 
dependencies in pollutant levels, leading to suboptimal 
predictions, especially in fluctuating environments [13][14]. 

Additionally, many existing approaches require extensive 
computational resources, which limits their practicality for real-
time air quality monitoring [15]. The Bidirectional Gated 
Recurrent Unit (Bi-GRU) offers a promising alternative by 
processing time series data in both forward and backward 
directions, allowing for a more comprehensive understanding 
of temporal dependencies [16]. This bidirectional approach 
enables Bi-GRU to achieve higher prediction accuracy, making 
it better suited for capturing intricate patterns in air quality 
sensor data, ultimately improving real-time pollution 
management [17]. 

This research aims to improve the accuracy of carbon 
monoxide (CO) concentration predictions by leveraging an 
optimised Bidirectional Gated Recurrent Unit (Bi-GRU) model 
designed specifically for time-series air quality data. By 
processing CO levels in both forward and backward directions, 
the Bi-GRU captures intricate temporal patterns, surpassing 
traditional models in its ability to predict short- and medium-
term fluctuations. Beyond advancing predictive accuracy, this 
study contributes to education by offering a practical, data-
driven approach that can be integrated into environmental 
education curricula. By engaging students, young researchers, 
and policymakers, the research emphasises the importance of 
air quality monitoring and its direct impact on public health and 
urban sustainability. Through hands-on learning with the Bi-
GRU model, learners can bridge theory and practice, fostering 
a deeper understanding of how advanced technology can 
address real-world challenges in environmental science. 

II. METHOD 

A. Dataset 

The dataset utilised in this study was obtained from Kaggle 
and comprises hourly carbon monoxide (CO) measurements 
gathered by chemical air quality sensors positioned in 
Yogyakarta, Indonesia. Covering an entire year, from January 
1, 2021, to December 31, 2021, the data offers a detailed 
perspective on CO fluctuations throughout different seasons 
and times of day, as illustrated in Fig. 1. The sensors are 
strategically distributed across the city to account for spatial 
variations in CO levels, capturing differences influenced by 
location and traffic density. For analytical consistency, each CO 
measurement was transformed into the Pollutant Standards 
Index (PSI), simplifying the interpretation of pollutant severity. 
Data preprocessing steps, including cleaning and min-max 
normalisation, were applied to enhance the quality and 
consistency of the dataset, ensuring robust and reliable inputs 
for the predictive model. 

B. Bi-GRU architecture 

The Bi-GRU architecture in this study is designed to handle 
time-series data with various sequence lengths, allowing it to 
capture both short- and medium-term temporal patterns in CO 
levels. The model takes inputs of 48, 96, and 144-hour 
sequences and predicts outputs for the next 24 and 48 hours. 
This structure enables the model to learn dependencies over 
different periods, adapting to both immediate and gradual 
changes in CO concentrations. The Bi-GRU consists of two 
layers, each with a hidden state dimension of 128 units, 



providing sufficient capacity for modelling complex temporal 
dependencies while maintaining computational efficiency. 

 

 

Fig. 1. Carbon Monoxide (CO) Dataset 

In a GRU cell, the calculations for the hidden state ℎ𝑡 at time 
step 𝑡 are as follows. Update Gate 𝑧𝑡 and Reset Gate 𝑟𝑡 are 
formulated in Equations (1) and (2). 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ 𝑥𝑡 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧) (1) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ 𝑥𝑡 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟) (2) 

Candidate Activation ℎ̃𝑡 is calculated in Equation (3). 

ℎ̃𝑡 = tanh(𝑊ℎ ⋅ 𝑥𝑡 + 𝑈ℎ ⋅ (𝑟𝑡 ⊙ℎ𝑡−1) + 𝑏ℎ) 
(3) 

Final Hidden State ℎ𝑡 is formulated in Equation (4). 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 
(4) 

   For a bidirectional GRU (Bi-GRU), the hidden states from the 
forward (ℎ𝑡

→) and backward (ℎ𝑡
←) passes are concatenated at 

each time step as calculated in Equation (5). 

ℎ𝑡
− = [ℎ𝑡

→; ℎ𝑡
←] (5) 

where [;] denotes concatenation. This bidirectional setup allows 
the model to leverage information from both past and future 
contexts, enhancing its ability to capture complex temporal 
patterns in air quality data. 

C. Evaluation Metrics 

The evaluation metrics used in this study provide a 
comprehensive assessment of the model’s prediction accuracy 
for carbon monoxide (CO) concentration levels.  

Root Mean Squared Error (RMSE). RMSE measures the 
square root of the average squared differences between 

predicted and actual values. It emphasizes larger errors due to 
squaring, making it sensitive to outliers. RMSE is calculated in 
Equation 6. 
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where �̂�𝑖 is the predicted value, 𝑦𝑖  is the actual value and 𝑛 is 
the total number of observations. 

Mean Absolute Error (MAE). MAE calculates the average 
of the absolute differences between predicted and actual values, 
providing an interpretable measure of error in the same unit as 
the target variable. It is less sensitive to outliers than RMSE and 
is calculated in Equation (7). 
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Mean Absolute Percentage Error (MAPE). MAPE 
expresses the prediction error as a percentage, making it easier 
to interpret in terms of relative error. However, MAPE can be 
skewed if actual values are close to zero. It is calculated in 
Equation (8). 
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Coefficient of Determination (R²). R², or the goodness-of-fit 
measure, represents the proportion of the variance in the actual 
values that is predictable from the model. An R² value closer to 
1 indicates a better fit. It is calculated in Equation (9). 

𝑅2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (9) 

where �̅� is the mean of the actual values. 

These metrics together provide a well-rounded view of the 
model's predictive performance, covering both error magnitude 
(RMSE and MAE), relative accuracy (MAPE), and goodness of 
fit (R²). 

D. Training and Validation 

The dataset in this study is divided into three parts: 70% for 
training, 20% for validation, and 10% for testing. This split 
allows the model to learn effectively from a substantial portion 
of the data, while using the validation set to fine-tune 
hyperparameters and avoid overfitting. For training, a learning 
rate of 0.001 is used, combined with the Adam optimiser, which 
is well-suited for handling sparse gradients and adapting the 
learning rate dynamically. The batch size is set to 64, balancing 
computational efficiency and model stability by updating the 
model’s weights after every 64 samples. This approach ensures 



a robust and well-generalized model, tested on unseen data, 
with the goal of achieving high accuracy in predicting CO 
concentration levels in air quality data. 

III. RESULT AND DISCUSSION 

A. Performance Metrics 

Table 1 presents the model’s performance across different 
input-output sequence lengths, highlighting its accuracy in 
predicting CO levels. As the input length increases, there is a 
notable improvement in error metrics such as MSE, RMSE, and 
MAE, with the best results achieved at 144-hour inputs, 
reflecting the model’s ability to capture more complex temporal 
patterns. For instance, with a 144-hour input and a 24-hour 
output, the model achieves an MSE of 0.32, an RMSE of 0.57, 
and an MAE of 0.38, demonstrating excellent precision with an 
R² of 0.99. Similarly, the lowest MAPE values are observed 
with longer input sequences, indicating minimal deviation from 
actual values and strong reliability for practical applications. 
These findings underscore the importance of longer input 
sequences in enhancing predictive accuracy, especially for real-
time air quality monitoring in urban settings. 

TABLE I.  PERFORMANCE METRICS 

Input Output MSE RMSE MAE MAPE R² 

48 24 0.40 0.63 0.42 0.05% 0.98 

96 24 0.35 0.59 0.40 0.04% 0.99 
144 24 0.32 0.57 0.38 0.03% 0.99 

48 48 0.45 0.67 0.44 0.06% 0.97 

96 48 0.38 0.62 0.41 0.04% 0.98 
144 48 0.33 0.57 0.39 0.03% 0.99 

 

Table 1 illustrates that as input sequence length increases, 
the model consistently delivers higher accuracy in predicting 
CO levels, particularly with a 144-hour input window. This 
trend suggests that longer input sequences enable the model to 
capture more temporal dependencies, leading to more precise 
forecasts. The low MSE, RMSE, and MAE values, coupled 
with an R² of 0.99 for both 24-hour and 48-hour outputs, 
indicate that the model effectively generalises and adapts to 
varying prediction horizons. However, the slightly lower R² and 
higher error metrics for the 48-hour output with shorter input 
sequences imply that capturing longer dependencies is crucial 
for maintaining performance, significantly when extending 
prediction lengths. This pattern highlights the need for 
substantial historical data input to achieve optimal 
performance, aligning with the model’s bidirectional structure, 
which thrives on comprehensive temporal information. 

Despite these strengths, the model’s reliance on longer input 
sequences may pose challenges in practical deployment, 
especially in settings with limited data storage or processing 
capabilities. Additionally, the performance difference between 
input lengths suggests that the model might not fully utilise 
shorter sequences, which could restrict its adaptability in real-
time monitoring scenarios with rapid data updates. Another 
consideration is that while longer inputs yield higher accuracy, 
they may also introduce potential noise, impacting stability in 
environments with high pollutant fluctuations. Future work 
could explore hybrid models that balance input length with 

filtering mechanisms to mitigate noise effects while 
maintaining accuracy. Overall, Table 1 emphasises the 
importance of tailored input-output configurations to maximise 
the Bi-GRU model’s predictive capabilities for air quality 
applications. 

B. Training and Validation Loss 

Fig. 2 illustrates the training and validation loss trajectories 
over 100 epochs, showcasing the model's learning progression 
and stability. This result is based on Input-Output 144-24. 
Initially, both losses start relatively high, with a rapid decrease 
observed within the first few epochs, indicating effective initial 
learning. As training continues, the losses stabilise at a low 
level, demonstrating that the model has achieved a firm fit on 
the training data without significant overfitting. The slight 
fluctuations in validation loss reflect minor adjustments as the 
model adapts to unseen data, maintaining generalisation ability. 
Overall, the convergence of training and validation losses 
suggests that the model has been well-tuned and is effective in 
predicting CO levels with minimal error. 

 

Fig. 2. Training and validation loss 

The results shown in Fig. 2 suggest that the model has 
effectively learned to predict CO levels, as indicated by the 
rapid drop in both training and validation loss during the initial 
epochs. This sharp decline reflects the model's ability to capture 
core patterns in the data early on, a promising sign of efficient 
training. However, the convergence of training and validation 
losses at a relatively low level also implies that further learning 
gains are minimal as the model reaches a plateau. This 
stabilisation could indicate that the model has captured most of 
the underlying structure in the data, with little room for 
improvement. The lack of divergence between training and 
validation loss suggests that overfitting is not a significant 
issue, indicating a well-generalized model. 

Despite these positive outcomes, a few critical observations 
warrant attention. The minor fluctuations in validation loss 
suggest sensitivity to specific data patterns that the model 
encounters during validation, pointing to potential areas of 
complexity that the model might not fully capture. This residual 
variability may reflect noise in the data or limitations in the 



model's capacity to generalise to all temporal variations in CO 
levels. Additionally, while convergence is generally favourable, 
it suggests that the model has reached its performance ceiling 
under the current configuration, leaving little room for 
improvement without additional tuning or model adjustments. 
Overall, while the model performs robustly, these findings 
underscore the importance of continual evaluation and potential 
refinement to enhance predictive accuracy further. 

C. Comparison of Original and Predicted Data 

Fig. 3 compares the original CO concentration data with the 
model's predicted values, illustrating the model's effectiveness 
in tracking the actual data trends. This result is based on Input-
Output 144-24. The close alignment between the two lines 
suggests that the model accurately captures both the overall 
pattern and the fluctuations in CO levels over time. Minor 
deviations are visible but appear minimal, indicating a high 
level of precision in the model's predictions. This strong 
correlation implies that the model has effectively learned the 
underlying structure of the time-series data, allowing it to 
forecast CO concentrations reliably. Overall, Fig. 3 
demonstrates the model's potential as a valuable tool for real-
time air quality monitoring, closely mirroring actual pollutant 
behaviour. 

 

Fig. 3. Comparison of Original and Predicted Data 

Fig. 3 reveals that the model performs well in predicting CO 
levels, with predicted values closely following the original 
data’s trends. This close alignment suggests that the model 
effectively captures both seasonal variations and short-term 
fluctuations in CO concentrations, which is crucial for real-time 
monitoring applications. The occasional minor discrepancies 
between the original and predicted values highlight areas where 
the model might slightly under- or overestimate concentrations, 
possibly due to noise in the data or abrupt environmental 
changes that the model cannot fully capture. Nonetheless, these 
deviations are relatively small, demonstrating the model's 
robustness and its ability to generalise well across the dataset. 
Overall, the figure underscores the model's reliability and 
responsiveness to complex temporal patterns in air quality data. 

 

Despite its strengths, a critical examination of Fig. 3 raises 
questions about the model’s performance during peak CO 
concentrations. In some of these peaks, the model appears to 
smooth out extreme values, indicating a potential limitation in 
accurately capturing sudden spikes in pollutant levels. This 
smoothing effect, while not significantly detrimental, could 
limit the model’s effectiveness in scenarios where extreme 
values are vital for health risk assessments and immediate 
responses. Additionally, the strong alignment observed here 
might be dataset-specific, suggesting the need for further testing 
on diverse datasets to confirm the model's generalizability. 
Overall, while Figure 3 demonstrates promising results, these 
observations highlight the importance of continuous model 
evaluation and adaptation to ensure accurate predictions across 
varied conditions. 

D. Summarization of Key Findings 

This research addresses the critical challenge of accurately 
predicting carbon monoxide (CO) levels in urban 
environments, focusing on enhancing real-time air quality 
monitoring. Through an optimised Bidirectional Gated 
Recurrent Unit (Bi-GRU) model, the study demonstrates that 
longer input sequences significantly improve prediction 
accuracy, capturing complex temporal dependencies in CO 
fluctuations. Key findings include a high R² of 0.99 for 144-
hour inputs, with low MSE, RMSE, and MAE values, 
indicating the model’s substantial fit and minimal deviation 
from actual values. The results reveal that extending input 
length enhances the model’s precision, particularly for both 24-
hour and 48-hour prediction windows. These findings 
underscore the Bi-GRU model’s potential as a reliable tool for 
urban air quality forecasting, with implications for improved 
public health and environmental management. 

E. Result Interpretations 

The results show a clear pattern where increased input 
sequence length leads to improved prediction accuracy, with the 
model performing best at 144-hour inputs for both 24-hour and 
48-hour prediction windows. This relationship suggests that the 
Bi-GRU model effectively leverages extended temporal 
information, aligning well with the initial expectation that 
longer input sequences capture complex trends in CO 
fluctuations. However, slight performance drops in shorter 
input sequences, especially for 48-hour predictions, were 
unexpected and may indicate limitations in the model’s ability 
to generalise with minimal historical data. An alternative 
explanation for this discrepancy could be that shorter sequences 
fail to provide sufficient context, leading the model to over-rely 
on immediate past values rather than capturing broader trends. 
Overall, these insights affirm the value of longer sequences but 
highlight the need for further exploration of model adjustments 
to improve performance with shorter inputs. 

F. Research Implications 

This research holds significant potential not only for 
advancing air quality prediction in urban environments but also 
for enriching educational practices in environmental science. 
By demonstrating the effectiveness of the Bi-GRU model in 
capturing temporal dependencies in CO levels, the study aligns 



with prior findings on the value of advanced neural networks 
over traditional methods for handling complex time-series data. 
The insights gained, such as the impact of longer input 
sequences on model performance, provide not just technical 
advancements but also a valuable educational tool. The Bi-
GRU model can serve as a learning framework for students to 
explore data analysis, machine learning, and the real-world 
implications of air pollution. By incorporating the case study of 
Yogyakarta into academic settings, students can bridge theory 
with practice, gaining a deeper understanding of the critical role 
of technology in environmental monitoring and public health. 
This integration underscores the dual impact of the research: 
fostering innovation in predictive modelling while empowering 
future generations to address pressing environmental 
challenges. 

G. Research Limitations 

This study concludes that the Bi-GRU model is highly 
effective for predicting CO levels in urban air quality 
monitoring, particularly with longer input sequences. However, 
a limitation is the model’s decreased accuracy with shorter 
input sequences, which may hinder its adaptability in real-time 
settings with limited historical data. Despite this, the results 
remain robust, as the model consistently performed well across 
the majority of scenarios, achieving high R² values and low 
error metrics. These limitations highlight potential areas for 
refinement but do not detract from the model's core capability 
of accurately capturing temporal patterns in CO data. Thus, the 
findings are still valid and effectively address the research 
question, affirming the Bi-GRU model’s utility in enhancing air 
quality prediction systems. 

H. Recommendations for Future Research 

For practical implementation, it is recommended to 
incorporate the Bi-GRU model into urban air quality 
monitoring systems, particularly in areas with high pollution 
variability, to improve real-time CO prediction and support 
rapid public health responses. Future research should 
investigate ways to enhance the model’s performance with 
shorter input sequences, which would improve adaptability in 
real-time applications where extensive historical data may not 
be available. Additionally, exploring hybrid models that 
combine Bi-GRU with attention mechanisms or data filtering 
techniques could help capture critical pollution spikes without 
compromising accuracy. Researchers could also evaluate the 
model’s performance across different pollutants and geographic 
locations to test its generalizability and robustness. These 
efforts would refine the Bi-GRU’s effectiveness and broaden its 
applicability in comprehensive environmental monitoring 
frameworks. 

IV. CONCLUSION 

This study successfully demonstrates the effectiveness of 
the Bidirectional Gated Recurrent Unit (Bi-GRU) model in 
predicting urban carbon monoxide (CO) levels, with a focus on 
Yogyakarta as a case study. By leveraging its bidirectional 
architecture, the model captures intricate temporal patterns in 
air quality data, achieving remarkable accuracy with a 
coefficient of determination (R²) of 0.99 for longer input 

sequences. These results highlight the model’s potential as a 
reliable tool for real-time air quality monitoring, addressing 
critical urban challenges posed by CO pollution. Beyond its 
technical contributions, this research offers practical insights 
for integrating advanced machine learning applications into 
environmental education. By empowering students, young 
researchers, and policymakers with data-driven tools, this work 
underscores the importance of technology in fostering 
environmental awareness and sustainable urban living. While 
the Bi-GRU model excels in capturing complex dependencies 
in extensive datasets, its reduced performance with shorter 
input sequences presents an opportunity for future 
improvements. This limitation invites further exploration into 
hybrid approaches that combine Bi-GRU with filtering or 
attention mechanisms to enhance adaptability in real-time 
scenarios. Additionally, expanding the model’s application to 
other pollutants and geographic contexts could validate its 
generalizability and broaden its impact. These advancements 
would refine the model’s utility as a critical resource for 
addressing pollution-related health risks and improving urban 
air quality. Ultimately, this research bridges technological 
innovation and human-centred goals, aligning predictive 
precision with the urgent need for healthier, more sustainable 
communities. 
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