Improving Urban Air Quality Prediction Using Bidirectional GRU: A Case Study of CO Concentration to Support Education in Yogyakarta

I Wayan Ordiyasa, Sriwidodo Sriwidodo, Harits Dwi Wiratma, Mohammad Diqi, Marselina Endah Hiswati, Noverianus Noverianus, Namira Anjani Rahmadina Syihab

Abstract


Urban air pollution, particularly carbon monoxide (CO), poses serious health risks, emphasizing the need for accurate prediction models to support real-time monitoring and timely responses. This study explores the use of a Bidirectional Gated Recurrent Unit (Bi-GRU) model to improve CO concentration forecasts, capturing intricate temporal patterns in air quality data. The model, optimized for varying input-output sequences, contributes to advancements in air quality prediction by enhancing accuracy with extended historical data. Using hourly CO data from Yogyakarta, Indonesia, the Bi-GRU model was evaluated across input lengths of 48, 96, and 144 hours with prediction outputs of 24 and 48 hours. Results show high prediction accuracy, with the best performance at 144-hour inputs, achieving an R² of 0.99 and minimal error metrics. These findings underscore the model's reliability and precision in capturing CO fluctuations, making it a promising tool for urban environmental management. This research offers a foundation for further refinement and broader applications in air quality monitoring systems.

Full Text:

PDF

References


R. K. Angatha and A. Mehar, “Impact of Traffic on Carbon Monoxide Concentrations Near Urban Road Mid-Blocks,” J. Inst. Eng. India Ser. A, vol. 101, no. 4, pp. 713–722, 2020, doi: 10.1007/s40030-020-00464-2.

H. E. Obanya, N. H. Amaeze, O. Togunde, and A. A. Otitoloju, “Air Pollution Monitoring Around Residential and Transportation Sector Locations in Lagos Mainland,” J. Health Pollut., vol. 8, no. 19, 2018, doi: 10.5696/2156-9614-8.19.180903.

I. Gregorczyk-Maga et al., “Air Pollution May Affect the Assessment of Smoking Habits by Exhaled Carbon Monoxide Measurements,” Environ. Res., vol. 172, pp. 258–265, 2019, doi: 10.1016/j.envres.2019.01.063.

Y. Wang et al., “The Impact of Carbon Monoxide on Years of Life Lost and Modified Effect by Individual- And City-Level Characteristics: Evidence From a Nationwide Time-Series Study in China,” Ecotoxicol. Environ. Saf., vol. 210, p. 111884, 2021, doi: 10.1016/j.ecoenv.2020.111884.

K. Chen et al., “Ambient Carbon Monoxide and Daily Mortality: A Global Time-Series Study in 337 Cities,” Lancet Planet. Health, vol. 5, no. 4, pp. e191–e199, 2021, doi: 10.1016/s2542-5196(21)00026-7.

A. Rebeiro‐Hargrave et al., “City Wide Participatory Sensing of Air Quality,” Front. Environ. Sci., vol. 9, 2021, doi: 10.3389/fenvs.2021.773778.

N. A. Manan, A. N. Aizuddin, and R. Hod, “Effect of Air Pollution and Hospital Admission: A Systematic Review,” Ann. Glob. Health, vol. 84, no. 4, p. 670, 2018, doi: 10.29024/aogh.2376.

A. Phosri, K. Ueda, V. L. H. Phung, B. Tawatsupa, A. Honda, and H. Takano, “Effects of Ambient Air Pollution on Daily Hospital Admissions for Respiratory and Cardiovascular Diseases in Bangkok, Thailand,” Sci. Total Environ., vol. 651, pp. 1144–1153, 2019, doi: 10.1016/j.scitotenv.2018.09.183.

X. Li et al., “The Impact of Ambient Air Pollution on Hospital Admissions, Length of Stay and Hospital Costs for Patients With Diabetes Mellitus and Comorbid Respiratory Diseases in Panzhihua, Southwest China,” J. Glob. Health, vol. 13, 2023, doi: 10.7189/jogh.13.04118.

A. F. W. Ho et al., “Ambient Air Quality and Emergency Hospital Admissions in Singapore: A Time-Series Analysis,” Int. J. Environ. Res. Public. Health, vol. 19, no. 20, p. 13336, 2022, doi: 10.3390/ijerph192013336.

Y. Tian et al., “Ambient Air Pollution and Daily Hospital Admissions: A Nationwide Study in 218 Chinese Cities,” Environ. Pollut., vol. 242, pp. 1042–1049, 2018, doi: 10.1016/j.envpol.2018.07.116.

H. Zhou, T. Wang, H. Zhao, and Z. Wang, “Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network,” Sustainability, vol. 15, no. 1, p. 356, 2022, doi: 10.3390/su15010356.

A. Masih, “Machine learning algorithms in air quality modelling,” Glob. J. Environ. Sci. Manag., vol. 5, no. 4, pp. 515–534, 2019, doi: 10.22034/GJESM.2019.04.10.

D. Zhu, C. Cai, T. Yang, and X. Zhou, “A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization,” Big Data Cogn. Comput., vol. 2, no. 1, p. 5, 2018, doi: 10.3390/bdcc2010005.

Y. Li, P. Jiang, Q. She, and G. Lin, “Research on Air Pollutant Concentration Prediction Method Based on Self-Adaptive Neuro-Fuzzy Weighted Extreme Learning Machine,” Environ. Pollut., vol. 241, pp. 1115–1127, 2018, doi: 10.1016/j.envpol.2018.05.072.

L. Fang et al., “A Gridded Air Quality Forecast Through Fusing Site-Available Machine Learning Predictions From RFSML v1.0 and Chemical Transport Model Results From GEOS-Chem v13.1.0 Using the Ensemble Kalman Filter,” Geosci. Model Dev., vol. 16, no. 16, pp. 4867–4882, 2023, doi: 10.5194/gmd-16-4867-2023.

Y.-S. Chang, S. Abimannan, H.-T. Chiao, C.-Y. Lin, and Y.-P. Huang, “An Ensemble Learning Based Hybrid Model and Framework for Air Pollution Forecasting,” Environ. Sci. Pollut. Res., vol. 27, no. 30, pp. 38155–38168, 2020, doi: 10.1007/s11356-020-09855-1.

A. Gilik, A. S. Öğrenci, and A. Özmen, “Air Quality Prediction Using CNN+LSTM-based Hybrid Deep Learning Architecture,” Environ. Sci. Pollut. Res., vol. 29, no. 8, pp. 11920–11938, 2021, doi: 10.1007/s11356-021-16227-w.

S. Masmoudi, H. Elghazel, D. Taieb, O. Yazar, and A. Kallel, “A Machine-Learning Framework for Predicting Multiple Air Pollutants’ Concentrations via Multi-Target Regression and Feature Selection,” Sci. Total Environ., vol. 715, p. 136991, 2020, doi: 10.1016/j.scitotenv.2020.136991.

I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21, no. 4, p. 1064, 2021, doi: 10.3390/s21041064.

V. Balamurugan, J. Chen, A. Wenzel, and F. N. Keutsch, “Spatiotemporal Modeling of Air Pollutant Concentrations in Germany Using Machine Learning,” Atmospheric Chem. Phys., vol. 23, no. 17, pp. 10267–10285, 2023, doi: 10.5194/acp-23-10267-2023.




DOI: http://dx.doi.org/10.17977/um010v7i22024p63-69

Refbacks

  • There are currently no refbacks.


 

 Letters in Information Technology Education (LITE)
 2654-5667
 Contact
 Published by Electrical Engineering, Universitas Negeri   Malang, Indonesia
 Jl. Semarang No. 5 Malang, East Java, Indonesia
 Homepage:  http://journal2.um.ac.id/index.php/lite/index
 E-mail: lite.teum@gmail.com

View My Stats