Pemanfaatan Pemodelan Machine Learning dalam Memprediksi Parameter Kualitas Udara Nitrogen Dioksida (NO2) Berdasarkan Algoritma Extra Trees Regression di DKI Jakarta

Muhammad Aulia Zikri, I Wayan Jyesta Jaya Taruna, Juang Merdeka, Agung Hari Saputra

Abstract


Penelitian ini mengkaji kualitas udara di DKI Jakarta, terutama pada parameter Nitrogen Dioksida (NO2) dengan memanfaatkan model Extra Trees Regression untuk memprediksi indeks NO2. Penelitian menggunakan data time series NO2 tahun 2022, yang menunjukkan tidak adanya tren jangka panjang yang signifikan serta mengindikasikan data bersifat stasioner dan acak. Analisis periodogram, histogram, dan plot Q-Q menunjukkan distribusi normal dengan penyimpangan minor. Tidak ditemukan autokorelasi yang signifikan antara data aktual NO2 dan data model, menandakan kemungkinan adanya white noise. Evaluasi model dengan parameter seperti MASE, MAE, RMSE, MAPE, SMAPE, dan R2 menunjukkan kinerja model yang baik. Nilai R2 yang mencapai 73.14% menandakan kemampuan model dalam menjelaskan variabilitas data aktual. Meskipun model Extra Trees Regression mengikuti pola musiman, terdapat ketidaksesuaian antara nilai aktual dan prediksi di beberapa titik. Hal ini menandakan adanya potensi overfitting atau kesulitan dalam menangkap pola data secara spesifik. Penelitian ini memberikan informasi pemodelan yang cocok untuk memprediksi kualitas udara di DKI Jakarta.

Keywords


Kualitas Udara, Nitrogen Dioksida (NO2), Extra Trees Regression, Time Series

Full Text:

PDF

References


Y. S. & F. Adnan, “Model Driving Force, Pressure, State, Impact, Response (Dpsir) Dalam Menilai Kualitas Udara,” Teknol. Lingkung., pp. 31–36, 2019.

H. N. Mahendra et al., “Assessment and Prediction of Air Quality Level Using ARIMA Model: A Case Study of Surat City, Gujarat State, India,” Nat. Environ. Pollut. Technol., vol. 22, no. 1, pp. 199–210, 2023, doi: 10.46488/NEPT.2023.V22I01.018.

L. Al-Awadi, “Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait,” J. Air Waste Manag. Assoc., vol. 68, no. 1, pp. 54–72, 2018, doi: 10.1080/10962247.2017.1365781.

G. R. H. Bedekar, Gayatri., Patil, R.S., Tergundi, Parimal., “An Efficient Implementation of ARIMA Technique for Air Quality Prediction,” SSRN, 2021.

S. Ameer et al., “Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities,” IEEE Access, vol. 7, pp. 128325–128338, 2019, doi: 10.1109/ACCESS.2019.2925082.

A. Bhosale, K. Chaudhari, K. Andhe, F. Naik, and S. Chaudhari, “Analysis Of Air Pollutants Affecting The Air Quality Using ARIMA,” Int. Res. J. Eng. Technol., 2023, [Online]. Available: www.irjet.net.

A. Toha, P. Purwono, and W. Gata, “Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 1, pp. 12–21, 2022, doi: 10.12928/biste.v4i1.6079.

A. Wicahyo, A. Pudoli, D. Kusumaningsih, and N. Noripansyah, “Penggunaan Algoritma Naive Bayes dalam klasifikasi Pengaruh Pencemaran Udara,” ICT (Information Commun. Technol., vol. 20, no. 1, pp. 103–108, 2021.

M. A. S. Jawwad and Z. Oktaviani, “Rencana Pengelolaan dan Pemantauan Kualitas Udara Terhadap Rencana Kegiatan Pembangunan Permukiman,” Pros. ESEC, vol. 4, no. 1, pp. 154–159, 2023.

I. Area, K. C. Jusoh, N. Zila, A. Hamid, and S. Side, “Peramalan Melalui Pendekatan Kalut ke atas Siri Masa Karbon Monoksida di Kawasan Perindustrian,” vol. 9, no. i, pp. 55–62, 2021.

H. Zheng, Y. Cheng, and H. Li, “Investigation of model ensemble for fine-grained air quality prediction,” China Commun., vol. 17, no. 7, pp. 207–223, 2020, doi: 10.23919/J.CC.2020.07.015.

D. A. Christian, A. Bachtiar, and C. Candi, “Urban Health for the Development of Healthy Cities in Indonesia,” JKMP (Jurnal Kebijak. dan Manaj. Publik), vol. 11, no. 2, pp. 138–146, 2023, doi: 10.21070/jkmp.v11i2.1759.

U. F. Rizi, Suradi, Sunaryo, and A. Agus, “Analisis Dampak Diterapkannya Kebijakan Working From Home Saat Pandemi Covid-19 Terhadap Kondisi Kualitas Udara Di Jakarta,” J. Meteorol. …, vol. 6, no. 3, pp. 6–14, 2019.

D. Carruthers et al., “Urban emission inventory optimisation using sensor data, an urban air quality model and inversion techniques,” Int. J. Environ. Pollut., vol. 66, no. 4, pp. 252–266, 2019, doi: 10.1504/IJEP.2019.104878.

Nurjanah Siti, Siregar Amril Mutoi, and Kusumaningrum Dwi Sulistya, “Penerapan Algoritma K – Nearest Neighbor (KNN) Untuk Klasifikasi Pencemaran Udara Di Kota Jakarta,” Sci. Student J. Information, Technol. Sci., vol. 1, no. 2, pp. 71–76, 2020, [Online]. Available: http://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/14.

S. Ferrari, M. G. Badas, M. Garau, A. Seoni, and G. Querzoli, “The air quality in narrow two-dimensional urban canyons with pitched and flat roof buildings,” Int. J. Environ. Pollut., vol. 62, no. 2–4, pp. 347–368, 2017, doi: 10.1504/IJEP.2017.089419.

J. Huang et al., “A crowdsource-based sensing system for monitoring fine-grained air quality in urban environments,” IEEE Internet Things J., vol. 6, no. 2, pp. 3240–3247, 2019, doi: 10.1109/JIOT.2018.2881240.

T. S. Kumar, H. S. Das, U. Choudhary, P. E. Dutta, D. Guha, and Y. Laskar, “Analysis and Prediction of Air Pollution in Assam Using ARIMA/SARIMA and Machine Learning,” no. May, pp. 317–330, 2021, doi: 10.1007/978-981-16-1119-3_28.

V. R. Pasupuleti, Uhasri, P. Kalyan, Srikanth, and H. K. Reddy, “Air Quality Prediction of Data Log by Machine Learning,” 2020 6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 1395–1399, 2020, doi: 10.1109/ICACCS48705.2020.9074431.

K. Nandini and G. Fathima, “Urban Air Quality Analysis and Prediction Using Machine Learning,” 1st Int. Conf. Adv. Technol. Intell. Control. Environ. Comput. Commun. Eng. ICATIECE 2019, pp. 98–102, 2019, doi: 10.1109/ICATIECE45860.2019.9063845.

T. Madan, S. Sagar, and D. Virmani, “Air Quality Prediction using Machine Learning Algorithms-A Review,” Proc. - IEEE 2020 2nd Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2020, no. December 2020, pp. 140–145, 2020, doi: 10.1109/ICACCCN51052.2020.9362912.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006, doi: 10.1007/s10994-006-6226-1.

C. Alkahfi, Z. R. Santoso, A. Fitrianto, and S. D. Oktarina, “Jurnal Sains dan Informatika,” J. Sains dan Inform., vol. 4, no. 1, pp. 77–85, 2018, doi: 10.22216/jsi.v4i1.

Y. Li, T. Bao, J. Gong, X. Shu, and K. Zhang, “The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network,” IEEE Access, vol. 8, pp. 94440–94452, 2020, doi: 10.1109/ACCESS.2020.2995592.

A. K. MS, M. A. Sasmita, and A. H. Saputra, “Prediksi Particulate Matter (PM 2.5) di DKI Jakarta Menggunakan XGBoost,” J. Apl. Meteorol., vol. 2, no. 1, pp. 1–9, 2023, doi: 10.36754/jam.v2i1.355.

D. D. Purwanto and E. S. Honggara, “Klasifikasi Kategori Hasil Perhitungan Indeks Standar Pencemaran Udara dengan Gausian Naïve Bayes (Studi Kasus: ISPU DKI Jakarta 2020),” J. Intell. Syst. Comput., vol. 4, no. 2, pp. 102–108, 2022, doi: 10.52985/insyst.v4i2.259.

C. Sihombing, A. H. Saputra, F. P. Sari, and A. Mulya, “Prediksi Curah Hujan di Wilayah DKI Jakarta dengan Model NeuralProphet,” J. Apl. Meteorol., vol. 1, no. 2, 2022.

M. W. Ahmad, J. Reynolds, and Y. Rezgui, “Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees,” J. Clean. Prod., vol. 203, pp. 810–821, 2018, doi: 10.1016/j.jclepro.2018.08.207.

M. M. Hameed, M. K. Alomar, F. Khaleel, and N. Al-Ansari, “An Extra Tree Regression Model for Discharge Coefficient Prediction: Novel, Practical Applications in the Hydraulic Sector and Future Research Directions,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/7001710.

J. B. Habyarimana, “Forecasting Crop Production: A Seasonal Regression Model Decomposition of MAPE and SMAPE,” J. Stat. Sci. Appl., vol. 2, pp. 203–212, 2014.

G. Perone, “Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries,” Econometrics, vol. 10, no. 2, 2022, doi: 10.3390/econometrics10020018.




DOI: http://dx.doi.org/10.17977/um0260v7i22023p031

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 MUHAMMAD AULIA ZIKRI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

      

References Tool:

 

 

View My Stats