Dampak met-before dalam perkembangan kognisi
Abstract
Setiap individu memiliki pengalaman yang telah dialami sebelumnya. Pengalaman tersebut akan membentuk koneksi di otak yang memengaruhi individu dalam memahami situasi/konteks baru, khususnya dalam memahami pengetahuan baru. Berkaitan dengan pengaruh pengalaman sebelumnya terhadap pengetahuan baru, David O. Tall memperkenalkan pertama kali istilah met-before. Met-before ini menggambarkan apa yang dipikirkan individu saat ini sebagai akibat dari pengalaman-pengalaman yang telah ditemui individu sebelumnya. Artikel ini mengkaji dampak met-before dalam perkembangan kognisi peserta didik. Pembahasan difokuskan pada artikel-artikel terkait met-before yang didukung oleh data empiris. Hasil pembahasan menunjukkan bahwa met-before dapat suportif dalam beberapa konteks dan problematik dalam konteks lainnya. Met-before suportif ini mendukung ide-ide lama untuk digunakan dalam konteks baru sebagai upaya pemahaman pengetahuan baru, sedangkan met-before problematik akan menimbulkan hambatan kognitif dan kesalahan dalam memahami pengetahuan baru.
Keywords
Full Text:
PDFReferences
Aini, D. N., & Rofiki, I. (2021). Hambatan kognitif mahasiswa dalam proses pembuktian berdasarkan Toulmin’s Argumentation Pattern. JP2M (Jurnal Pendidikan dan Pembelajaran Matematika), 7(1), 24-32.
Akkoç, H. (2006). The concept of function: What have students met before? In Adrian Simpson (Ed.), Retirement as Process and Concept: A Festschrift for Eddie Gray and David Tall. Karlova Univerzita v Praze, Pedagogická Fakulta.
Bachelard, G. (1983). La formation de l’esprit scientifique. J. Vrin. Paris.
Bajracharya, R. R., Sealey, V. L., & Thompson, J. R. (2023). Student understanding of the sign of negative definite integrals in mathematics and physics. International Journal of Research in Undergraduate Mathematics Education, 9, 65-94.
Blomhøj, M., & Kjeldsen, T. H. (2013). Students’ mathematical learning in modelling activities. In Teaching mathematical modelling: Connecting to research and practice (pp. 141-151). Springer.
Brousseau, G. (1983), Les obstacles épistémologiques et les problèmes en Mathématiques. Recherches en didactique des Mathématiques, 4(2) 164-198.
Cornu, B. (2002). Limits. In David O. Tall (Ed.), Advanced Mathematical Thinking. Kluwer Academic Publishers.
Gal, H. (2019). When the use of cognitive conflict is ineffective—problematic learning situations in geometry. Educational Studies in Mathematics, 102(2), 239-256.
Lima, R. N. de, & Tall, D. O. (2006). The concept of equations: What have students met before? In Proceedings of the 30th Conference of PME (vol. 4, pp. 233–241). Prague, Czech Republic.
Lima, R. N. de, & Tall, D. O. (2008). Procedural embodiment and magic in linear equations. Educational Studies in Mathematics, 67(1), 3–18.
McGowen, M. C., & Tall, D. O. (2010). Metaphor or met-before? The effects of previous experience on the practice and theory of learning mathematics. Journal of Mathematical Behavior, 29(3), 169–179.
McGowen, M. A., & Tall, D. O. (2013). Flexible thinking and met-befores: Impact on learning mathematics. The Journal of Mathematical Behavior, 32(3), 527-537.
Rofiki, I. (2013). Profil pemecahan masalah geometri siswa kelas akselerasi SMP Negeri 1 Surabaya ditinjau dari tingkat kemampuan matematika. In Prosiding Seminar Nasional Matematika dan Aplikasinya (Vol. 1, pp. 300-310).
Rofiki, I. (2015). Pengaruh met-before dalam aspek emosi siswa. In Prosiding Seminar Nasional (pp. 19-26).
Rofiki, I., Nusantara, T., Subanji, & Chandra, T. D. (2017). Exploring local plausible reasoning: The case of inequality tasks. Journal of Physics: Conference Series, 943(1), 012002.
Sowder, J. (2000). Mathematics in the middle grades: Linking research and practice. In National conference on curriculum, instruction, and assessment in the middle grades: Linking research and practice (pp. 72–83).
Tall, D. O. (2002). The psychology of advanced mathematical thinking. In David O. Tall (Ed.), Advanced Mathematical Thinking. Kluwer Academic Publishers.
Tall, D. O. (2004). The three worlds of mathematics. For the Learning of Mathematics, 23(3), 29–33.
Tall, D. O. (2006). A theory of mathematical growth through embodiment, symbolism and proof. In Annales de didactique et de sciences cognitives (Vol. 11, pp. 195-215).
Tall, D. O. (2007). Developing a theory of mathematical growth. ZDM, 39, 145-154.
Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5-24.
Tall, D. O. (2013). How humans learn to think mathematically: Exploring the three worlds of mathematics. Cambridge University Press.
Tall, D. O., Lima, R. N. de, & Healy, L. (2014). Evolving a three-world framework for solving algebraic equations in the light of what a student has met before. The Journal of Mathematical Behavior, 34, 1-13.
Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limit and continuity. Educational Studies in Mathematics, 12(2), 151-169.
Tsamir, P., & Tirosh, D. (2023). Mis-in and mis-out concept images: The case of even numbers. Educational Studies in Mathematics, 112(2), 207-224.
Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In Advanced mathematical thinking (pp. 65-81). Springer.
DOI: http://dx.doi.org/10.17977/um076v7i12023p7-12
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Imam Rofiki

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JKPM Indexed By:

Jurnal Kajian Pembelajaran Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License