Investigate the Potential Renewable Energy of Microalgae Spirulina sp Using Proximate Analyzer, SEM-EDX, and Thermogravimetry

Yahya Zakaria, Sukarni Sukarni, Poppy Puspitasari, Nandang Mufti, Samsudin Anis, Anwar Johari

Abstract


Microalgae Spirulina sp which has been cultivated by the Brackishwater Aquaculture Development Center, Situbondo Indonesia were tested for their potential energy performance using proximate analyzer, SEM-EDX, and thermogravimetry. The proximate analyzer showed volatile matter (VM), fixed carbon (FC), moisture, ash content (AC), total sulfur of microalgae Spirulina sp 68.15, 12.57, 11.22, 8.06, and 0.67 (wt%, ar), respectively, and the gross calorific value (GCV) is 4971 kcal/kg (dry basis). SEM-EDX test showed the morphology and chemical content of Spirulina sp. The content of microalgae Spirulina sp is dominated by carbon (C) and oxygen (O), then followed by chlorine (Cl), sodium (Na), potassium (K), sulfur (S), magnesium (Mg), and phosphorus (P). Thermogravimetry pyrolysis test of microalgae Spirulina sp resulted thermogravimetry (TG) analysis and derivative thermogravimetry (DTG) analysis curve, which is divided into three different steps. The moisture of microalga Spirulina sp was vaporized at the first step, started at 27°C, and finished at 173°C with a decomposed mass of about 13.81% of the total initial mass. The second step began at the end of vaporize moisture at about 173°C and ended at around 618 °C. The gasification process occurred in volatile matter content and resulted mass loss of about 57.9% of Spirulina sp total mass. The last step showed the process of gasification of residual substances, started at the end of the volatile matter step, 618°C, and stopped at 995°C with a decomposed mass of 24.6% from total mass.


Keywords


Microalgae, proximate, renewable energy, SEM-EDX, Spirulina sp., thermogravimetry

Full Text:

PDF

References


T. Lancet and R. Health, “Editorial The regional and global impact of the Russian invasion of Ukraine,” Lancet Reg. Heal. - Eur., vol. 15, p. 100379, 2022, doi: 10.1016/j.lanepe.2022.100379.

F. Sassi, and R. E. Geopolitics, “Structural power in Russia ’ s gas sector : The commoditisation of the gas market and the case of Novatek,” Energy Strateg. Rev., vol. 41, no. November 2021, p. 100842, 2022, doi: 10.1016/j.esr.2022.100842.

Z. Huang, X. Ming, and H. Duan, “Heterogeneous effects of energy poverty convergence in Europe,” Energy Strateg. Rev., vol. 41, p. 100822, 2022, doi: 10.1016/j.esr.2022.100822.

V. Vasudev, X. Ku, and J. Lin, “Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis,” Bioresour. Technol., vol. 317, no. June, p. 124007, 2020, doi: 10.1016/j.biortech.2020.124007.

A. Parsy, C. Sambusiti, P. Baldoni-andrey, T. Elan, and F. Périé, “Cultivation of Nannochloropsis oculata in saline oil & gas wastewater supplemented with anaerobic digestion effluent as nutrient source,” Algal Res., vol. 50, no. March, p. 101966, 2020, doi: 10.1016/j.algal.2020.101966.

E. Cano-Pleite, M. Rubio-Rubio, N. García-Hernando, and A. Soria-Verdugo, “Microalgae pyrolysis under isothermal and non-isothermal conditions,” Algal Res., vol. 51, no. May, p. 102031, 2020, doi: 10.1016/j.algal.2020.102031.

A. A. D. Maia and L. C. de Morais, “Kinetic parameters of red pepper waste as biomass to solid biofuel,” Bioresour. Technol., vol. 204, pp. 157–163, 2016, doi: 10.1016/j.biortech.2015.12.055.

P. Basu, Biomass Gasification, Pyrolysis and Torrefaction. London: Elsevier Inc, 2018.

A. Prasetiyo, S. Sukarni, A. Irawan, A. A. Permanasari, and P. Puspitasari, “Physicochemical properties and porosity of coconut chell waste (CSW) biomass,” IOP Conf. Ser. Earth Environ. Sci., vol. 847, no. 1, 2021, doi: 10.1088/1755-1315/847/1/012017.

M. V. Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion,” Bioresour. Technol., vol. 101, no. 14, pp. 5601–5608, 2010, doi: 10.1016/j.biortech.2010.02.008.

K. Annamalai and I. K. Puri, Combustion Science and Engineering. New York: Taylor & Francis Group, LLC., 2007.

V. Mettanant, P. Basu, and J. Butler, “Agglomeration of biomass fired fluidized bed gasifier and combustor,” Can. J. Chem. Eng., vol. 87, no. 5, pp. 656–684, 2009, doi: 10.1002/cjce.20211.

H. Fatehi and X. S. Bai, “Effect of Pore Size on the Gasification of Biomass Char,” Energy Procedia, vol. 75, no. 1, pp. 779–785, 2015, doi: 10.1016/j.egypro.2015.07.514.

L. Leng, Q. Xiong, L. Yang, H. Li et al., “An overview on engineering the surface area and porosity of biochar,” Sci. Total Environ., vol. 763, p. 144204, 2021, doi: 10.1016/j.scitotenv.2020.144204.

I. Obernberger, T. Brunner, and G. Bärnthaler, “Chemical properties of solid biofuels-significance and impact,” Biomass and Bioenergy, vol. 30, no. 11, pp. 973–982, 2006, doi: 10.1016/j.biombioe.2006.06.011.

S. van Loo and J. Koppejan, The Handbook of Biomass Combustion and Co-firing. London: Earthscan, 2008.

J. Yan, Q. Yang. L. Zhang. Z. Lei et al., “Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods,” Carbon Resour. Convers., vol. 3, no. December, pp. 173–181, 2020, doi: 10.1016/j.crcon.2020.11.002.

Sukarni, Sudjito, N. Hamidi, U. Yanuhar, and I. N. G. Wardana, “Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock,” Int. J. Energy Environ. Eng., vol. 5, no. 4, pp. 279–290, 2014, doi: 10.1007/s40095-014-0138-9.

S. Sukarni, “Heliyon Thermogravimetric analysis of the combustion of marine microalgae Spirulina platensis and its blend with synthetic waste,” Heliyon, vol. 6, no. November 2018, p. e04902, 2020, doi: 10.1016/j.heliyon.2020.e04902.

R. López, C. Fernández, J. Fierro, J. Cara, O. Martínez, and M. E. Sánchez, “Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis,” Energy, vol. 74, no. C, pp. 845–854, 2014, doi: 10.1016/j.energy.2014.07.058.

U. Rajak and T. N. Verma, “Spirulina microalgae biodiesel – A novel renewable alternative energy source for compression ignition engine,” J. Clean. Prod., vol. 201, no. X, pp. 343–357, 2018, doi: 10.1016/j.jclepro.2018.08.057.

H. Y. Nanlohy, I. N. G. Wardana, N. Hamidi, L. Yuliati, and T. Ueda, “The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets,” Fuel, vol. 220, no. December 2017, pp. 220–232, 2018, doi: 10.1016/j.fuel.2018.02.001.

U. Rajak, P. Nashine, and T. N. Verma, “Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine,” Energy, vol. 189, no. X, p. 116311, 2019, doi: 10.1016/j.energy.2019.116311.

Y. Hu, M. Gong, S. Feng, C. (Charles) Xu, and A. Bassi, “A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production,” Renew. Sustain. Energy Rev., vol. 101, no. November 2018, pp. 476–492, 2019, doi: 10.1016/j.rser.2018.11.037.




DOI: http://dx.doi.org/10.17977/um016v6i22022p066

Refbacks



Copyright (c) 2022 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats