Effect of Grafting Nano-TiO2 on Sansevieria cylindrica Fiber Properties

Chrisrulita Sekaradi Wiguna, Heru Suryanto, Aminnudin Aminnudin, Joseph Selvi Binoj, Alamry Ali

Abstract


Natural fibers, which are abundant, environmentally friendly, and biodegradable, are used as a replacement for synthetic fibers. The composite strength can be increased by treating the surfaces of natural fibers with suitable chemicals, which can also improve the interface interaction between fiber and matrix. Application of a coupling agent in chemical treatment is utilized to reinforce the bonding between fiber and matrix. The objective of the study is to determine the influence of silane concentration on the Sansevieria cylindrica fiber properties. The methods included fibers treatment using ethanol and coupling agent as dissolving and TiO2 with concentrations of 0 percent, 0.25 percent, 0.5 percent, 0.75 percent, and 1 percent. The mechanical strength testing was conducted through a single fiber test. Fiber morphology was observed using an electron microscope. FTIR analyzes the change in fiber chemical composition caused by TiO2 addition. As a result, the morphology of S. cylindrica fibers became rougher and showed a rougher surface after a silane concentration of 1 percent, but with the proper concentration, some fiber surfaces provided a good interface. Ti-O bonds are formed at a wavelength of 475 cm-1. The shift in a peak at 400–500 cm-1 indicates Ti-O-Ti group stretching vibrations believed to have originated from TiO2 particles. The mechanical strength increases as the concentration of TiO2 increases, with the highest fiber strength of 284.66 MPa observed at a TiO2 concentration of 1 percent. This represents a 26 percent higher tensile strength compared to the control specimen.

Keywords


Coupling agent, nano-TiO2, Sansevieria cylindrica, silane, tensile strength.

Full Text:

PDF

References


H. Suryanto, E. Marsyahyo, Y. S. Irawan, and R. Soenoko, “Effect of alkali treatment on crystalline structure of cellulose fiber from mendong (Fimbristylis globulosa) straw,” Key Eng. Mater., vol. 594–595, pp. 720–724, 2015, https://doi.org/10.4028/www.scientific.net/KEM.594-595.720.

G. Pamuk, U. Kemiklioǧlu, O. Sayman, and O. Özdemir, “Low velocity impact response of biodegradable PLA composites reinforced by reclaimed cotton preforms,” Tekst. Ve Konfeksiyon, vol. 26, no. 3, pp. 321–326, 2016.

X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” J. Polym. Environ., vol. 15, no. 1, pp. 25–33, 2007, https://doi.org/10.1007/s10924-006-0042-3.

N. Reddy, and Y. Yang, “Preparation and characterization of long natural cellulose fibers from wheat straw,” J Agric Food Chem, no. 55, pp. 8570–8575, 2007, https://doi.org/10.1021/jf071470g.

J. Maulana, H. Suryanto, A. Aminnudin, “Effect of graphene addition on bacterial cellulose-based nanocomposite,” J. Mech. Eng. Sci. Technol., vol. 6, no. 2, pp. 107–116, 2022, http://dx.doi.org/10.17977/um016v6i22022p107.

B. Liu and A. B. Koc, “Mechanical properties of switchgrass and miscanthus,” Trans. ASABE, vol. 60, no. 3, pp. 581–590, 2017, https://doi.org/10.13031/trans.11925.

P. D. Rao, D. V. Rao, A. L. Naidu, and MVA R. Bahubalendruni, “Mechanical properties of banana fiber reinforced composites and manufacturing techniques: a review”, Int. J. Res. Dev. Technol., vol. 8, no. 5, p. 9, 2017.

V. P. Kommula, K. O. Reddy, M. Shukla, T. Marwala, E. V. S. Reddy, and A. V. Rajulu, “Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from Napier grass,” Int. J. Polym. Anal. Charact., vol. 21, no. 1, pp. 18–28, 2015, https://doi.org/10.1080/1023666X.2015.1089650.

H. Suryanto, E. Marsyahyo, Y. S. Irawan, and R. Soenoko, “Morphology, structure, and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis globulosa),” J. Nat. Fibers, vol. 11, no. 4, pp. 333–351, 2014, https://doi.org/10.1080/15440478.2013.879087.

V. S. Sreenivasan, S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy, “Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation,” Mater. Des., vol. 32, no. 1, pp. 453–461, 2011, https://doi.org/10.1016/j.matdes.2010.06.004.

C. C. Eng, N. A. Ibrahim, N. Zainuddin, H. Ariffin, and W. Md. Z. Wan Yunus, “Compositional and morphological changes of chemical modified oil palm mesocarp fiber by alkaline bleaching and silane coupling agents,” BioResources, vol. 9, no. 3, pp. 5290–5301, 2014.

D. Prasetyo, W. W. Raharjo, and Ubaidillah., “Pengaruh penambahan coupling agent terhadap kekuatan mekanik komposit polyester-cantula dengan anyaman erat 3D angle interlock,” J. Mek., vol. 12, p. 9, 2013.

J. G. Kim, I. Choi, D. G. Lee, and I. S. Seo, “Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites,” Compos. Struct., vol. 93, no. 11, pp. 2696–2705, 2011, https://doi.org/10.1016/j.compstruct.2011.06.002.

K. Witono, Y. S. Irawan, R. Soenoko, and H. Suryanto, “Pengaruh perlakuan alkali (NaOH) terhadap morfologi dan kekuatan tarik serat mendong,” J. Rekayasa Mesin, vol. 4, no. 3, pp. 227–234, September 2013.

Y. Liu, G. Huanga, C. An, X. Chen, P. Zhang, R. Feng, and W. Xiong, “Use of nano-TiO2 self-assembled flax fiber as a new initiative for immiscible oil/water separation,” J. Clean. Prod., vol. 249, p. 119352, 2019, https://doi.org/10.1016/j.jclepro.2019.119352.

A. Oushabi, F. O. Hassani, Y. Abboud, S. Sair, O. Tanane, and E. B. Abdeslam, “Improvement of the interface bonding between date palm fibers and polymeric matrices using alkali-silane,” Int. J. Ind. Chem., vol. 9, no. 4, pp. 335–343, 2018, https://doi.org/10.1007/s40090-018-0162-3.

H. Wang, G. Xian, and H. Li, “Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite,” Compos. Part Appl. Sci. Manuf., vol. 76, pp. 172–180, 2015, https://doi.org/10.1016/j.compositesa.2015.05.027.

Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, “Silane coupling agents used for natural fiber/polymer composites: A review,” Compos. Part Appl. Sci. Manuf., vol. 41, no. 7, pp. 806–819, 2010, https://doi.org/10.1016/j.compositesa.2010.03.005.

F. Ladiora, W. P. Sari, and O. Fadriyanti, “Pengaruh penambahan silane pada glass fiber non dental terhadap persentase dan volume penyerapan air fiber reinforced composite,” J. B-Dent, vol. 3, no. 2, pp. 100–110, January 2019.

L. H. Zaini, M. Jonoobi, P. Md. Tahir, and S. Karimi, “Isolation and characterization of cellulose whiskers from Kenaf (Hibiscus cannabinus L.) bast fibers,” J. Biomater. Nanobiotechnology, vol. 04, no. 01, pp. 37–44, 2013, https://doi.org/10.4236/jbnb.2013.41006.

J. Dasgupta, S. Chakraborty, J. Sikder, R. Kumar, D. Pal, S. Curcio, and E. Drioli, “The effects of thermally stable titanium silicon oxide nanoparticles on structure and performance of cellulose acetate ultrafiltration membranes,” Sep. Purif. Technol., vol. 133, pp. 55–68, 2014, https://doi.org/10.1016/j.seppur.2014.06.035.

T. Parangi, and M. K. Mishra, “Titanium dioxide as energy storage material: a review on recent advancement,” in Titanium Dioxide, IntechOpen, 2021.




DOI: http://dx.doi.org/10.17977/um016v7i12023010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats