The Combustion Characteristics of Calophyllum inophyllum Fuel in the Presence of Magnetic Field

Imam Rudi Sugara, Nasrul Ilminnafik, Salahuddin Junus, Muh Nurkoyim Kustanto, Yuni Hermawan

Abstract


The study objective is to investigate the combustion characteristics of Callophyllum inophyllum fuel in presence of a magnetic fields. To conduct the experiment, a bunsen burner was utilized, with fuel and air being dispensed via a syringe pump and compressor, both regulated by a flowmeter. The fuel and air pipes were heated to 532.15 (K) to facilitate fuel evaporation. The equivalent ratio of 0.5, 1, and 1.5 was adjusted to control air discharge and fuel. An 11,000 gausses artificial magnet was used, with N-S, N-S, N-N, and S-S being the various magnetic pole configurations. The study found that the magnetic field can enhance combustion quality by affecting the molecules involved in the combustion process. The magnetic field's force also intensifies the movement of O2, making it more energetic. As O2 travels from the North Pole to the South Pole through the combustion reaction zone, it quickens the oxidation-reduction process and curtails diffusion combustion. The red color's intensity diminishes with the magnetic field's effect, indicating this phenomenon. When a magnetic field is applied, the polarity of C.inophyllum biodiesel fuel becomes highly favorable. The triglyceride carbon chain bonds become unstable, and the van der Walls dispersion forces are weakened, which facilitates easier O2 binding to the fuel, resulting in more efficient combustion. An increase in the laminar burning velocity value can be noticed when exposed to a magnetic field.


Keywords


Biodiesel, laminar burning velocity, magnetic field, premixed flame, RGB color

Full Text:

PDF

References


A. E. Atabani, A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, I. A. Badruddin, and H. Fayaz., “Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production,” Renew. Sustain. Energy Rev., vol. 18, pp. 211–245, 2013, doi: 10.1016/j.rser.2012.10.013.

M. M. K. Bhuiya, M. G. Rasul, M. M. K. Khan, N. Ashwath, A. K. Azad, and M. A. Hazrat, “Second generation biodiesel: Potential alternative to-edible oil-derived biodiesel,” in Energy Procedia, 2014, vol. 61, pp. 1969–1972. doi: 10.1016/j.egypro.2014.12.054.

M. S. Shehata, “Emissions, performance and cylinder pressure of diesel engine fuelled by biodiesel fuel,” Fuel, vol. 112, no. X, pp. 513–522, 2013, doi: 10.1016/j.fuel.2013.02.056.

R. Vallinayagam, S. Vedharaj, W. M. Yang, P. S. Lee, K. J. E. Chua, and S. K. Chou, “Combustion performance and emission characteristics study of pine oil in a diesel engine,” Energy, vol. 57, pp. 344–351, 2013, doi: 10.1016/j.energy.2013.05.061.

H. C. Ong, A. S. Silitonga, H. H. Masjuki, T. M. I. Mahlia, W. T. Chong, and M. H. Boosroh, “Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra,” Energy Convers. Manag., vol. 73, pp. 245–255, 2013, doi: 10.1016/j.enconman.2013.04.011.

H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and R. S. Norhasyima, “Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3501–3515, 2011, doi: 10.1016/j.rser.2011.05.005.

I. W. Muderawan and N. K. P. Daiwataningsih, “Pembuatan biodesel dari minyak Nyamplung (Calophyllum inophylum L,) dan analisis Metil Esternya dengan GC-MS,” J. FMIPA, pp. 324–331, 2016.

H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong, and K. Y. Leong, “Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine,” Energy Convers. Manag., vol. 81, pp. 30–40, 2014, doi: 10.1016/j.enconman.2014.01.065.

S. Chattopadhyay and R. Sen, “Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process,” Appl. Energy, vol. 105, pp. 319–326, 2013, doi: 10.1016/j.apenergy.2013.01.003.

S. Pambudi, N. Ilminnafik, S. Junus, and M. N. Kustanto, “Experimental study on the effect of nano additives γal2o3 and equivalence ratio to bunsen flame characteristic of biodiesel from Nyamplung (Calophyllum Inophyllum),” Automot. Exp., vol. 4, no. 2, pp. 51–61, 2021, doi: 10.31603/ae.4569.

S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, “Review of biodiesel composition, properties, and specifications,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 143–169, 2012, doi: 10.1016/j.rser.2011.07.143.

H. M. Mahmudul, F. Y. Hagos, R. Mamat, A. A. Adam, W. F. W. Ishak, and R. Alenezi, “Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review,” Renew. Sustain. Energy Rev., vol. 72, no. April 2016, pp. 497–509, 2017, doi: 10.1016/j.rser.2017.01.001.

A. Demirbas, “Progress and recent trends in biodiesel fuels,” Energy Convers. Manag., vol. 50, no. 1, pp. 14–34, 2009, doi: 10.1016/j.enconman.2008.09.001.

D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010, doi: 10.1016/j.apenergy.2009.10.006.

D. L. Setyadi, N. Ilminnafik, H. Sutjahjono, T. V. Kusumadewi, and R. Raka, “Analysis of mixed premixed combustion characteristics of biodiesel candlenut oil (Aleurites moluccana) with biodiesel fuel,” AIP Conf. Proc., vol. 2278, no. October, 2020, doi: 10.1063/12.0001259.

H. Köten and A. S. Parlakyiğit, “Effects of the diesel engine parameters on the ignition delay,” Fuel, vol. 216, no. August 2017, pp. 23–28, 2018, doi: 10.1016/j.fuel.2017.11.136.

I. S. Abdullah, A. Khalid, N. Jaat, R. S. Nursal, H. Koten, and Y. Karagoz, “A study of ignition delay, combustion process and emissions in a high ambient temperature of diesel combustion,” Fuel, vol. 297, no. April, p. 120706, 2021, doi: 10.1016/j.fuel.2021.120706.

H. C. Ong, H. H. Masjuki, T. M. I. Mahlia, A. S. Silitonga, W. T. Chong, and T. Yusaf, “Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine,” Energy, vol. 69, pp. 427–445, May 2014, doi: 10.1016/j.energy.2014.03.035.

H. Venu and V. Madhavan, “Effect of Al2O3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: performance, combustion and emission characteristics,” Fuel, vol. 186, pp. 176–189, 2016, doi: 10.1016/j.fuel.2016.08.046.

P. M. Patel, G. P. Rathod, and T. M. Patel, “Performance and emission analysis of single cylinder diesel engine under the influence of magnetic fuel energizer,” IOSR J. Mech. Civ. Eng., vol. 11, no. 2, pp. 34–39, 2014, doi: 10.9790/1684-11283439.

H. Y. Nanlohy, I. N. G. Wardana, M. Yamaguchi, and T. Ueda, “The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets,” Fuel, vol. 279, no. February, p. 118373, 2020, doi: 10.1016/j.fuel.2020.118373.

H. Y. Nanlohy, I. N. G. Wardana, N. Hamidi, L. Yuliati, and T. Ueda, “The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets,” Fuel, vol. 220, no. December 2017, pp. 220–232, 2018, doi: 10.1016/j.fuel.2018.02.001.

Y. Al Ali, M. Hrairi, and I. Al Kattan, “Potential for improving vehicle fuel efficiency and reducing the environmental pollution via fuel ionization,” Int. J. Environ. Sci. Technol., vol. 9, no. 3, pp. 495–502, 2012, doi: 10.1007/s13762-012-0053-7.

P. V. Kumar, S. K. Patro, and V. Pudi, “Experimental study of a novel magnetic fuel ionization method in four stroke diesel engines,” Int. J. Mech Eng. Rob. Res., vol. 3, no. 1, pp. 151–159, 2014.

R. R. Sahoo and A. Jain, “Experimental analysis of nanofuel additives with magnetic fuel conditioning for diesel engine performance and emissions,” Fuel, vol. 236, pp. 365–372, Jan. 2019, doi: 10.1016/j.fuel.2018.09.027.

A. S. Faris, S. K. Al-Naseri, N. Jamal, R. Jamal, R. Isse, M. Abed, Z. Fouad, A. Kazim, N. Reheem, A. Chaloob, H. Mohammad, H. jasim, J. Sadeq, A. Salim, A. Abas, “Effects of magnetic field on fuel consumption and exhaust emissions in two-stroke engine,” in Energy Procedia, 2012, vol. 18, pp. 327–338. doi: 10.1016/j.egypro.2012.05.044.

A. Demirbas, “Comparison of transesterification methods for production of biodiesel from vegetable oils and fats,” Energy Convers. Manag., vol. 49, no. 1, pp. 125–130, 2008, doi: 10.1016/j.enconman.2007.05.002.

B. K. Venkanna and C. Venkataramana Reddy, “Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil) - a three stage method,” Bioresour. Technol., vol. 100, no. 21, pp. 5122–5125, Nov. 2009, doi: 10.1016/j.biortech.2009.05.023.

W. Wenchao, L. Fashe, and L. Ying, “Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 2727–2736, 2020, doi: 10.1016/j.jmrt.2020.01.005.

V. Purnomo, A. S. Hidayatullah, A. Inam, O. P. Prastuti, E. L. Septiani, and R. P. Herwoto, “Biodiesel dari minyak jarak pagar dengan transesterifikasi metanol subkritis,” J. Tek. Kim., vol. 14, no. 2, pp. 73–79, 2020, doi: 10.33005/jurnal_tekkim.v14i2.2032.

H. Hasby, N. Nurhafidhah, and G. Pamungkas, “Pemodelan komputasi komponen cis dan trans methyl oleat dalam biodiesel yang disintesis dari minyak kelapa sawit,” J. of Chemistry, vol. 1, no. 1, pp. 91–99, 2017.

S. Hu, J. Gao, C. gong, Y. Zhou, X. S. Bai, Z.S. Li. M. Alden, “Assessment of uncertainties of laminar flame speed of premixed flames as determined using a bunsen burner at varying pressures,” Appl. Energy, vol. 227, no. September, pp. 149–158, 2018, doi: 10.1016/j.apenergy.2017.09.083.

I. K. G. Wirawan, I. N. G. Wardana, R. Soenoko, and S. Wahyudi, ““Premixed Combustion of Coconut Oil on Perforated Burner," Int. Journal of Renewable Energy Develoment., vol. 2, no. 3, pp. 133-139, 2013.

D. Perdana, S. Adiwidodo, M. Choifin, and W.A. Winarko, “The effect of magnetic field variations in a mixture of coconut oil and jatropha on flame stability and characteristics,” EUREKA: Physics and Engineering, vol. 5, no. 5, pp. 13–22, 2021, doi: 10.21303/2461-4262.2021.001996.

D. C. Uguru-Okorie and A. A. Dare, “Combustion enhancers in diesel engines: magnetic field option,” IOSR J. Mech. Civ. Eng., vol. 5, no. 5, pp. 21–24, 2013, doi: 10.9790/1684-0552124.

F. A. El Fatih and G. M. Saber, “Effect of fuel magnetism on engine performance and emissions,” Aust. J. Basic Appl. Sci., vol. 4, no. 12, pp. 6354–6358, 2010.




DOI: http://dx.doi.org/10.17977/um016v7i12023p028

Refbacks



Copyright (c) 2023 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats