Analysis of Biomass Briquette Mixed Bagasse and Sugarcane Peel on the Performance of Forced Top-Lit Updraft Gasifier Stove

Intan Hardiatama, Aron Enruico, Yuni Hermawan, Muhammad Trifiananto, Skriptyan N. H. Syuhri

Abstract


The population growth in Indonesia from 270 million in 2020 to 279 million in 2024 has increased LPG consumption, potentially leading to future fuel shortages. The top-lit updraft (TLUD) gasifier stove using renewable biomass materials, offers a sustainable alternative. Biomass such as bagasse and sugarcane peel can be optimized into charcoal briquettes with high calorific value and low emissions. The calorific value of briquettes can be further enhanced by blending other high–calorific biomass materials. This experimental research focuses on testing the calorific value of raw bagasse and sugarcane peel before carbonization, as well as briquette mixtures (70:30, 50:50, 30:70) using a bomb calorimeter. The fuel briquettes are tested by operating the TLUD gasifier stove, measuring performance in terms of water boiling time (WBT) and flame characteristics. Results show that the 30:70 bagasse-to-sugarcane peel composition has the highest calorific value (6,242.292 cal/gram), followed by the 70:30 composition (6,094.753 cal/gram) and the 50:50 composition (5,657.935 cal/gram). The 30:70 ratio also achieved the longest flame duration (119 minutes 32 seconds), the highest combustion chamber temperature (570.2°C), and the greatest flame height (11.468 cm). The TLUD stove demonstrated an efficiency of 56.41%, with a char weight of 61 grams and a water temperature increase from 28.4°C to 90.4°C in 10 minutes 45 seconds. These briquettes met the SNI 01-6235-2000 standard, which requires a minimum calorific value of 5000 cal/g.

Keywords


Biomass, briquettes, calorific, value gasifier

Full Text:

PDF

References


A. Suzaqi., Suwandi, and F. Nurwulan, “The influence of airflow and hole variations against the flame color characteristics of the biomass gasifier,” E-Proceeding of Engineering Telkom University, vol. 7, no. 5, pp 9286–9293, Des, 2020. (in Indonesia).

M.I.I. Rabby, M.W. Uddin, M.R. Sheikh, H. K. Bhuiyan, T. A. Mumu, F. Islam, and A. Sultana, “Thermal performance of gasifier cooking stoves: A systematic literature review,” F1000Res, vol. 12, p. 38, Jan. 2023, doi: 10.12688/f1000research.126890.1.

I. Pavel, R.I. Rădoi, G. Matache, A.M.C. Popescu, and K. Pavel, “Experimental research to increase the combustion efficiency in the top-lit updraft principle based gasifier,” Energies (Basel), vol. 16, no. 4, Feb. 2023, doi: 10.3390/en16041912.

R. Alamsyah, E.H. Loebis, E. Susanto, L. Junaidi, and N.C. Siregar, “An experimental study on synthetic gas (syngas) production through gasification of Indonesian biomass pellet,” in Energy Procedia, pp. 292–299, 2015, doi: 10.1016/j.egypro.2015.01.053.

M.A. Habiby, M. Anggara, and A. Aldrin, “The effect of adding primary air ducts with variations in fuel type on the thermal efficiency of biomass stoves,” Jurnal Gear: Energi, Perancangan, Manufaktur & Material, vol.2, no.1, pp. 28-33. Jan. 2024. https://doi.org/10.36761/gear.v2i1.3672. (in Indonesia).

L.K. Mangalla, A. Kadir, and K. Kadir, “Carbonized biobriquettes from cashew shells and rice husks for sustainable energy,” Jurnal Ilmiah Teknik Mesin, vol.10, no.2, pp. 1-6. Mei, 2019. https://doi.org/10.5281/zenodo.3032856. (in Indonesia).

E. Elfiano, P. Subekti, & A. Sadil, “Proximate analysis and calorific value of biocharcoal briquettes from bagasse waste and wood charcoal,” Jurnal Aptek, vol.6, no.1, pp. 57-64. 2014. (in Indonesia).

R. Wibowo, “Thermal analysis of calorific value of sugarcane dregs and sawdust briquettes,” Jurnal Rekayasa Mesin, vol. 10, no. 1, pp. 9-15. 2019, https://doi.org/10.21776/ub.jrm.2019.010.01.2. (in Indonesia).

M. Njenga, N. Karanja, H. Karlsson, R. Jamnadass, M. Iiyama, J. Kithinji, and C. Sundberg, “Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquette in Kenya”. Journal of Cleaner Production, vol. 81, pp. 81–88. 2014. https://doi.org/10.1016/j.jclepro.2014.06.002.

A. Sugiharto, and I. Firdaus, “Making sugarcane bagasse and rice husk briquettes using the pyrolysis method as alternative energy,”. Inovasi Teknik Kimia, vol. 6, no. 1, pp. 17–22. Mar, 2021. https://doi.org/10.31942/inteka.v6i1.4449. (in Indonesia).

C. P. Sholeha, M. Trifiananto, M. Darsin, A. Sanata, I. Sholahuddin, and A. Anindito, “Effect of airflow rate and honeycomb channels addition on the efficiency of bagasse-fuelled top-lit updraft (TLUD) gasification stove,” Journal of Energy, Mechanical, Material, and Manufacturing Engineering, vol. 9, no. 1, 2024, doi: 10.22219/jemmme.v9i1.31776.

G.J. de M. Rocha, V.M. Nascimento, A.R. Gonçalves, V.F.N. Silva, and C. Martín, “Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition,” Ind Crops Prod, vol. 64, pp. 52–58, Feb. 2015, doi: 10.1016/j.indcrop.2014.11.003.

P. Coniwanti, R. Mu’in, H.W. Saputra, M.R.A. Andre, and R. Robinsyah, “The effect of NaOH concentration and the ratio of pineapple leaf fiber and sugarcane bagasse on making biofoam,” Jurnal Teknik Kimia, vol. 24, no. 1, pp. 1-7. Mar, 2018. https://doi.org/10.36706/jtk.v24i1.411. (in Indonesia).

C.V. Abiaziem, A.B. Williams, A.I. Inegbenebor, C.T. Onwordi, C.O. Ehi-Eromosele, and L.F. Petrik, “Isolation and characterisation of cellulose nanocrystal obtained from sugarcane peel,” Rasayan Journal of Chemistry, vol. 13, no. 1, pp. 177–187, Jan. 2020, doi: 10.31788/RJC.2020.1315328.

L. Mariati, “Making biobriquettes from peat and sugar cane bagasse as a learning resource for chemical science material and its role,” Konfigurasi: Jurnal Pendidikan Kimia dan Terapan, vol. 1, no. 1, pp. 113-120. 2017. https://doi.org/10.24014/konfigurasi.v1i1.4064. (in Indonesia).

S.M. Ridjayanti, R. A. Bazenet, W. Hidayat, I.S. Banuwa, and M. Riniarti, “The effect of variations in tapioca adhesive content on the characteristics of sengon wood waste charcoal briquettes (Falcataria moluccana)”, J Hut Trop., vol. 17, no. 1, pp. 5-11. Apr, 2021. https://doi.org/10.32522/ujht.v6i1.5597. (in Indonesia).

W. Gunawan, and B.A. Gunawan, “Boiler efficiency study of coal calorific value in pulverizer coal boilers capacity 300 T/H,” Jurnal Intent: Jurnal Industri Dan Teknologi Terpadu, vol. 3, no. 2, pp. 122-130. 2020 https://doi.org/10.47080/intent.v3i2.958. (in Indonesia).

A. El Hanandeh, A. Albalasmeh, and M. Gharaibeh, “Effect of pyrolysis temperature and biomass particle size on the heating value of biocoal and optimization using response surface methodology,” Biomass Bioenergy, vol. 151, Aug. 2021, doi: 10.1016/j.biombioe.2021.106163.

T.M. Gantina, “The effect of adding coconut shell charcoal on increasing the calorific value and the combustion process of bio-coal briquettes,” Jurnal Teknik Energi, Vol. 9, No. 1, pp. 31-36. 2019. (in Indonesia).

S. Suryaningsih, and D.R. Pahleva, “Quality analysis of empty bunch briquettes and palm oil shells with the addition of low density polythelene (LDPE) plastic waste as fuel,” Jurnal Material dan Energi, vol. 10, no. 01, 27-35. 2020. https://doi.org/10.24198/jmei.v10i01.31867. (in Indonesia).

C.F. Prasetiani, Suwandi, and F.I. Reza, “The influence of the biomass type and the speed of airflow on the performance of biomass gasifier,” eProceedings of Engineering Telkom University, vol. 6, no. 2. pp. 5217-5224. Aug, 2019.

N.F. Said, V. Yuliana, M.B. Budiono, and S.A. Susilo, “Pembuatan dan karakterisasi briket bio-coal berbahan campuran limbah batubara dan biomassa rumput melalui proses karbonisasi,” Akta Kimia Indonesia, vol. 8, no. 2, p. 111, Dec. 2023, doi: 10.12962/j25493736.v8i2.19181.




DOI: http://dx.doi.org/10.17977/um016v8i22024p322

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Mechanical Engineering Science and Technology (JMEST)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats