Investigasi Struktur dan Energi Band Gap Partikel Nano Tio2 Hasil Sintesis Menggunakan Metode Sol-Gel

Anita Listanti, Ahmad Taufiq, Arif Hidayat, Sunaryono Sunaryono


TiO2 is a semiconductor material that widely applied in various fields due to its superiority both in terms of physical and chemical properties. In this study, the TiO2 nanoparticles was synthesized using sol-gel method. The synthesis of TiO2 nanoparticles was started by reacted TiCl3 with aquades and titrated with ammonium hydroxide and then followed by calcination process at 600 0C for 1.5 hours. The structural characteristics were investigated using XRD. The fungsional groups of the TiO2 nanoparticles were characterized by FTIR. The optical properties of the TiO2 nanoparticles were determined using UV-Vis spectrometer. The morphology of the sample was characterized using SEM. The results show that the TiO2 has structure as anatase phase. The data analysis using the Scherrer’s equation show that the particle crystallite size of is about of 9.77 nm. The energy band gap value of the TiO2 is 3.28 eV. Based on the SEM image, the agglomeration of the sample was formed with the average diameter of particle size of TiO2 is about 92 nm.



structure; optical property; sol-gel; energy band gap; nanoparticle

Full Text:



S. Ma, S. Zhan, Y. Jia, and Q. Zhou, “Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light,” ACS Appl. Mater. Interfaces, vol. 7, no. 39, pp. 21875–21883, Oct. 2015.

S. Valencia, J. M. Marín, and G. Restrepo, “Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment,” Open Mater. Sci. J., vol. 4, no. 1, pp. 9–14, Feb. 2010.

A. Shabani, G. Nabiyouni, J. Saffari, and D. Ghanbari, “Photo-catalyst Fe3O4/TiO2 nanocomposites: green synthesis and investigation of magnetic nanoparticles coated on cotton,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8661–8669, Aug. 2016.

S. C. Lenaghan et al., “Monitoring the Environmental Impact of TiO$_{bf 2}$ Nanoparticles Using a Plant-Based Sensor Network,” IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 182–189, Mar. 2013.

J. Bai and B. Zhou, “Titanium Dioxide Nanomaterials for Sensor Applications,” Chem. Rev., vol. 114, no. 19, pp. 10131–10176, Oct. 2014.

D. Susanti, M. Nafi, H. Purwaningsih, R. Fajarin, and G. E. Kusuma, “The Preparation of Dye Sensitized Solar Cell (DSSC) from TiO2 and Tamarillo Extract,” Procedia Chem., vol. 9, pp. 3–10, 2014.

K. Nakata and A. Fujishima, “TiO2 photocatalysis: Design and applications,” J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, pp. 169–189, Sep. 2012.

M. M. Karkare, “Estimation of band gap and particle size of TiO2 nanoparticle synthesized using sol gel technique,” 2014, pp. 1–5.

Y. W. Myint, T. T. Moe, W. Y. Linn, A. Chang, and P. P. Win, “The Effect Of Heat Treatment On Phase Transformation And Morphology Of Nano-Crystalline Titanium Dioxide (Tio2),” Int. J. Sci. Technol. Res., vol. 6, no. 6, Jun. 2017.

K. K. Saini, S. D. Sharma, Chanderkant, M. Kar, D. Singh, and C. P. Sharma, “Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process,” J. Non-Cryst. Solids, vol. 353, no. 24–25, pp. 2469–2473, Jul. 2007.

H. Zhang and J. F. Banfield, “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO 2,” J. Phys. Chem. B, vol. 104, no. 15, pp. 3481–3487, Apr. 2000.

K. Yao, Z. Peng, Z. H. Liao, and J. J. Chen, Preparation and Photocatalytic Property of TiO2-Fe3O4 Core-Shell Nanoparticles, vol. 9. 2009.

H. Yin et al., “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2,” J. Mater. Chem., vol. 11, no. 6, pp. 1694–1703, 2001.

J. Guo et al., “Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst,” Ultrason. Sonochem., vol. 18, no. 5, pp. 1082–1090, Sep. 2011.

T. Sugimoto, X. Zhou, and A. Muramatsu, “Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method,” J. Colloid Interface Sci., vol. 259, no. 1, pp. 43–52, Mar. 2003.

A. Sharma1, R. K. Karn2, and S. K. Pandiyan, “Synthesis of TiO2 Nanoparticles by Sol-gel Method and Their Characterization,” J. Basic Appl. Eng. Res., vol. 1, no. 9, pp. 1–5, Oct. 2014.

Y. Zhu, L. Zhang, C. Gao, and L. Cao, “The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor,” J. Mater. Sci., vol. 35, pp. 4049–4054, 2000.

A. Molea and V. Popescu, “The obtaining of titanium dioxide nanocrystalline powders,” Optoelectron. Adv. Mater. – RAPID Commun., vol. 5, no. 3, pp. 242–246, 16 2011.

N. I. AS, V. Zharvan, R. Daniyati, H. Santoso, G. Yudoyono, and Darminto, “Pengaruh pH pada Pembentukan Nano-powder TiO2 Fasa Anatase dan Sifat Fotokatalisnya,” J. Fis. DAN Apl., vol. 11, no. 2, 2015.

J. Madarasz, “Thermal behavior of Ti-precursor sols for porous TiO2 thin films,” Solid State Ion., vol. 172, no. 1–4, pp. 515–518, Aug. 2004.

N. Wongpisutpaisan, C. Kahattha, N. Vittayakorn, A. Ruangphanit, and W. ECHARAPA, “Titanium Dioxide Nanostructures Synthesized by Sonochemical – hydrothermal Process,” J. Met. Mater. Miner., vol. 23, no. 1, pp. 19–24, 2013.

S. Bhukal, T. Namgyal, S. Mor, S. Bansal, and S. Singhal, “Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2−xO4 (0⩽x⩽1.0) prepared via sol–gel auto-combustion method,” J. Mol. Struct., vol. 1012, pp. 162–167, Mar. 2012.

M. Kaur and N. K. Verma, “CaCO3/TiO2 Nanoparticles Based Dye Sensitized Solar Cell,” J. Mater. Sci. Technol., vol. 30, no. 4, pp. 328–334, Apr. 2014.

P. Kongsong, L. Sikong, S. Niyomwas, and V. Rachpech, “Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO2/TiO2 ,” Sci. World J., vol. 2014, pp. 1–9, 2014.

R. Bensaha and H. Bensouy, “Synthesis, Characterization and Properties of Zirconium Oxide (ZrO2)-Doped Titanium Oxide (TiO2) Thin Films Obtained via Sol-Gel Process,” in Heat Treatment - Conventional and Novel Applications, F. Czerwinski, Ed. InTech, 2012.

R. Daniyati, V. Zharvan, N. Ichsan, Y. H. Pramono, and G. Yudoyono, “Penentuan Energi Celah Pita Optik Film TiO2 Menggunakan Metode Tauc Plot,” Pros. Semin. Sains Dan Teknol., vol. 1.

Copyright (c) 2018 Anita Listanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License