PENGARUH REPRESENTASI MIKROSKOPIK DINAMIK DAN STATIK MELALUI STRATEGI REACT TERHADAP HASIL BELAJAR DAN MOTIVASI BELAJAR MAHASISWA PADA MATERI ELEKTROKIMIA
Abstract
Keywords
Full Text:
PDFReferences
Abraham, M. R, Williamson, V. M., & Westbrook, S. L. (1994). A Cross-Age Study of the Understanding of Five Chemistry Concepts. Journal of Research in Science Teaching, 31(2): 147-165
Barak, M., Ashkar, T., & Dori, Y. J. (2010). Teaching Science via Animated Movies: Its Effect on Students' Learning Outcomes and Motivation. Dalam Y. Eshet-Alkalai, A. Caspi, S. Eden, N. Geri, Y. Yair (Eds.), Proceeding of the Chais Conference on Instructional Technologies Research 2010: Learning in the Technological Era (hlm. 1-6) Raanana: the Open University of Israel.
Barak, M., Ben-Chaim, D., & Zoller, U. (2007). Purposely Teaching for the Promotion of Higher-order Thinking Skills: A Case of Critical Thinking. Res Sci Educ, 37: 353-369.
Baylor, A., Ryu, J., & Shen, E. (2003). The Effects of Pedagogical Agent Voice and Animation on Learning, Motivation and Perceived Persona. The World Conference on Educational Multimedia, Hypermedia, and Telecommunications, Honolulu, Hawaii, USA.
Bétrancourt, M. (2005). The Animation and Interactivity Principles. Dalam R. E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (hlm. 287-296). New York: Cambridge University Press.
Boucheix, J. M. & Schneider, E. (2009). Static and Animated Presentations in Learning Dynamic Mechanical Systems. Learning and Instruction, 19: 112-127.
Bucat, R. (2004). Pedagogical Content Knowledge as a Way Forward: Applied Research in Chemistry Education. Chemistry Education Research and Practice, 5(3): 215-228.
Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The Development of a Two-Tier Multiple-Choice Diagnostic Instrument for Evaluating Secondary School Students’ Ability to Describe and Explain Chemical Reactions Using Multiple Levels of Representation. Chemistry Education Research and Practice, 8(3): 293-307.
Chittleborough, G. D. & Treagust, D. F. (2007). The Modelling Ability of Non-Major Chemistry Students and Their Understanding of the Sub-Microscopic Level. Chemistry Education Research and Practice, 8(3): 274-292.
Clarke, T., Ayres, P., & Sweller, J. (2005). The Impact of Sequencing and Prior Knowledge on Learning Mathematics through Spreadsheet Applications. Educational Technology Research & Development, 53(3): 15-24.
De Jong, O., Van Driel, D. H., & Verloop, N. (2005). Preservice Teachers’ Pedagogical Content Knowledge of Using Particle Models in Teaching Chemistry. Journal of Research In Science Teaching, 42(8): 947-964.
Devetak, I., Lorber, E. D., Juriševič, M., & Glažar, S. A. (2009). Comparing Slovenian Year 8 and Year 9 Elementary School Pupils’ Knowledge of Electrolyte Chemistry and Their Intrinsic Motivation. Chemistry Education Research and Practice, 10: 281-290.
Devetak, I., Vogrinc, J., & Glažar, S. A. (2007). Assessing 16-Year-Old Students’ Understanding of Aqueous Solution at Submicroscopic Level. Res Sci Educ, 2(39): 157-179.
Eilks, I., Moellering, M., & Valanides, N. (2007). Seventh-Grade Students' Understanding of Chemical Reactions: Reflections from an Action Research Interview Study. Eurasia Journal of Mathematics, Science & Technology Education, 3(4): 271-286.
Fajaroh, F., Nazriati, & Herunata. (2006). Dampak Pembelajaran Kimia yang Menggunakan Model Penggambaran Mikroskopik terhadap Hasil Belajar Siswa SMA. Jurnal Penelitian Kependidikan, 16(1): 106-122.
Farida, I. (2009). Interkoneksi Multipel Level Representasi Mahasiswa pada Kesetimbangan dalam Larutan melalui Pembelajaran Berbasis Web. Disertasi tidak diterbitkan. Bandung: Sekolah Pascasarjana Universitas Pendidikan Indonesia.
Fong, S. F. (2013). Effects of Segmented Animated Graphics Among Students of Different Spatial Ability Levels: A Cognitive Load Perspective. The Turkish Online Journal of Educational Technology, 12(1): 89-96.
Garnett, P. J. & Treagust, D. F. (1992a). Conceptual Difficulties Experienced by Senior High School Students ofElectrochemistry: Electric Circuits and Oxidation-Reduction Equations. Journal of Research in Science Teaching, 29(2): 121-142.
Garnett, P. J. & Treagust, D. F. (1992b). Conceptual Difficulties Experienced by Senior High School Students of Electrochemistry: Electrochemical (Galvanic) and ElectrolyticCells. Journal of Research in ScienceTeaching, 29(10): 1079-1099.
Hitipeuw, I. (2009). Belajar dan Pembelajaran. Malang: Universitas Negeri Malang
Hoffler, T. N. & Leutner, D. (2007). Instructional Animation Versus Static Pictures: a Meta-Analysis. Learning and Instruction, 17: 722-738.
Johnstone, A. H. (2000). Teaching of Chemistry-Logical or Psychological?. Chemistry Education: Research and Practice in Europe, 1(1): 9-15.
Kabapınar, F. M. (2009). Multi-Frame Illustrations: A Molecular Visual Strategy in Learning and Teaching Chemistry Concepts. Aust. J. Ed. Chem., 69: 11-16.
Kelly, R. M., Phelps, A. J., & Sanger, M. J. (2004). The Effects of a Computer Animation on Students’ Conceptual Understanding of a Can-Crushing Demonstration at the Macroscopic, Microscopic, and Symbolic Levels. Chem. Educator, 9(3): 184-189.
Lee, T. T. & Osman, K. (2012). Interactive Multimedia Module in the Learning of Electrochemistry: Effect on Student’s Understanding and Motivation. Procedia-Social and Behavioral Sciences. 46: 1323-1327.
Lewalter, D. (2003). Cognitive Strategies for Learning from Static and Dynamic Visuals. Learning and Instruction, 13: 177-189.
Mayer, R. E. (2003). The Promise of Multimedia Learning: Using the Same Instructional Design Methods Across Different Media. Learning and Instruction, 13: 125-139
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When Static Media Promote Active Learning: Annotated Illustrations Versus Narrated Animations in Multimedia Instruction. Journal of Experimental Psychology: Applied, 11(4): 256-265.
Middleton, J. A. & Spanias, P. A. (1999). Motivation for Achievement in Mathematics: Findings, Generalizations, and Criticisms of the Research. Journal for Research in Mathematics Education, 30(1): 65-88.
Moreno, R. & Mayer, R. (2007). Interactive Multimodal Learning Environments. Educational Psychology Review, 19: 309-326.
Nazriati & Fajaroh, F. (2007). PengaruhPenerapan Model Learning Cycle dalam Pembelajaran Kimia Berbahan Ajar Terpadu (Makroskopis Mikroskopis) terhadap Motivasi, Hasil Belajar, dan Retensi Kimia Siswa SMA. Jurnal Penelitian Kependidikan, 17(2): 90-108.
Niaz, M. (2002). Facilitating Conceptual Change in Students’ Understanding of Electrochemistry. International Journal of Science Education, 24(4): 425-439.
Özkaya, A. R., Üce, M., & Şahin, M. (2003). Prospective Teachers Conceptual Understanding of Electrochemistry: Galvanic and Electrolytic Cells. University Chemistry Education, 7(1): 1-12
Paas, F., Van Gerven, P. W. M., & Wouters, P. (2007). Instructional Efficiency of Animation: Effects of Interactivity through Mental Reconstruction of Static Key Frames. Applied Cognitive Psychology, 21: 783-793.
Pfeiffer, V. D. I., Scheiter, K., Kühl, T., & Gemballa, S. (2011). Learning How to Identify Species in a Situated Learning Scenario: Using Dynamic-Static Visualizations to Prepare Students for Their Visit to the Aquarium. Eurasia Journal of Mathematics, Science & Technology Education, 7(2): 135-147.
Prayitno. (2006). Pendekatan Kontekstual dalam Pembelajaran Kimia. Malang: Jurusan Kimia FMIPA UM.
Rieber, L. P. (1991). Animation, Incidental Learning, and Continuing Motivation. Journal of Educational Psychology, 83(3): 318-328.
Rosen, Y. (2009). The effects of an Animation-Based on-Line Learning Environmenton Transfer of Knowledge and on Motivation for Science and Technology Learning. Journal of Educational Computing Research, 40(4): 451-467
Rundgren, C. A. & Tibell, L. (2009). Critical Features of Visualizations of Transport through the Cell Membrane: an Empirical Study of Upper Secondary and Tertiary Students' Meaning-Making of a Still Image and an Animation. International Journal of Science and Mathematics Education, 8(2): 223-246.
Russell, J. W., Kozma, R. B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of Simultaneous Synchronized Macroscopic, Microscopic, and Symbolic Representations to Enhance the Teaching and Learning of Chemical Concepts. Journal of Chemical Education, 74(3): 330-334.
Saka, A. Z. (2011). Investigation of Student-Centered Teaching Applications of Physics Student Teachers. Eurasian Journal Physics and Chemistry Education, Jan (Special Issue): 51-58.
Schmidt, H. J., Marohn, A., & Harrison, A. G. (2007). Factors that Prevent Learning in Electrochemistry. Journal of Research in Science Teaching, 44(2): 258-283.
Schnotz, W. & Rasch, T. (2005). Enabling, Facilitating, and Inhibiting Effects ofAnimations in Multimedia Learning: Why Reduction of Cognitive Load Can Have Negative Results on Learning. ETR&D, 53(3): 47-58
Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3): 251-296.
Tasker, R. & Dalton, R. (2006). Research into Practice: Visualisation of the Molecular World Using Animations. Chemistry Education Research and Practice, 7(2): 141-159.
Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can It Facilitate? Int. J. Human-Computer Studies, 57: 247-262.
Vavra, K. L., Janjic-Watrich, V., Loerke, K., Phillips, L. M., Norris, S. P., & Macnab, J. (2011). Visualization in Science Education. ASEJ, 41(1): 22-30.
Weiss, R. E., Knowlton, D. S., & Morrison, G. R. (2002). Principles for Using Animation in Computer Based Instruction: Theoretical Heuristics for Effective Design. Computers in Human Behavior, 18: 465-477.
Williamson, V. M. & Abraham, M. R. (1995). The Effects of Computer Animation on the Particulate Mental Models of College Chemistry Students. Journal of Research in Science Teaching, 32(5): 521-534.
Wu, H., Krajcik, J. S., & Soloway, E. (2001). Promoting Understanding of Chemical Representations: Students' Use of a Visualization Tool in the Classroom. Journal of Research in Science Teaching, 38(7): 821-842.
Yarden, H. & Yarden, A. (2009). Learning Using Dynamic and Static Visualizations: Students’ Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method. Res SciEduc, 3(40): 375-402.
Yuniawatika. (2011). Penerapan Pembelajaran Matematika dengan Strategi REACT untuk Meningkatkan Kemampuan Koneksi dan Representasi Matematik Siswa Sekolah Dasar. Edisi Khusus (2): 107-120
Zoller, U. & Pushkin, D. (2007). Matching Higher-Order Cognitive Skills (HOCS) Promotion Goals with Problem-Based Laboratory Practice in A Freshman Organic Chemistry Course. Chemistry Education Research and Practice, 8(2): 153-171.
DOI: http://dx.doi.org/10.17977/um033v1i2p26-33
Refbacks
- There are currently no refbacks.
Jurnal Pembelajaran Sains
Study Program of Sciences Education
Faculty of Mathematics and Natural Sciences
Universitas Negeri Malang
Creation is distributed below Lisensi Creative Commons Atribusi 4.0 Internasional.
