Pengaruh Penerapan Diagram pada Pembelajaran STEM terhadap Kemampuan Pemecahan Masalah Siswa Materi Suhu dan Kalor

Mifta Rahmadiyah, Hari Wisodo, Parno Parno

Abstract


Penelitian ini bertujuan untuk mengetahui pengaruh penerapan diagram dalam pembelajaran STEM terhadap kemampuan pemecahan masalah siswapada topik materi suhu dan kalor. Metode penelitian yang digunakan adalah mixed methods. Penelitian kuantitatif menggunakan quasi-experimental design yang dipilih dengan purposive sampling dengan tipe posttest-only design dan penelitian kualitatif berupa wawancara menggunakan teknik purposive sampling. Subjek penelitian adalah siswa-siswi salah satu SMA di kota Malang kelas XI semester ganjil tahun ajaran 2019/2020. Sebelum penelitian dilakukan, kemampuan siswa antar kelas diuji menggunakan Mann-Whitney. Setelah kedua kelas diberikan intervensi berbeda, pengaruhnya diukur menggunakan effect size. Kemampuan pemecahan masalah siswa antar kelas ekperimen dan kontrol menunjukkan hasil berbeda. Pada kelas eksperimen, pengaruh kemampuan pemecahan masalah tergolong medium effect. Proses pembangunan solusi dalam pemecahan masalah fisika menjadi peran diagram dalam melatih kemampuan pemecahan masalah siswa. Discovery learning sebagai metode pembelajaran yang diterapkan pada kelas eksperimen membantu guru untuk menerapkan STEM yang berfokus pada penyelesaian masalah.


Keywords


Application of Diagrams, STEM Learning, Problem-Solving Ability, Temperature and Heat.

Full Text:

PDF

References


D. Halliday, R. Robert, and W. Jearl, Fisika Dasar, Ketujuh. Jakarta: Erlangga, 2010.

S. Ainsworth, “DeFT: A conceptual framework for considering learning with multiple representations,” Learn. Instr., vol. 16, no. 3, pp. 183–198, Jun. 2006, doi: 10.1016/j.learninstruc.2006.03.001.

S. Ainsworth, “The Educational Value of Multiple-representations when Learning Complex Scientific Concepts,” in Visualization: Theory and Practice in Science Education, J. K. Gilbert, M. Reiner, and M. Nakhleh, Eds. Dordrecht: Springer Netherlands, 2008, pp. 191–208. doi: 10.1007/978-1-4020-5267-5_9.

A. Maries and C. Singh, “Do Students Benefit from Drawing Productive Diagrams Themselves while Solving Introductory Physics Problems? The Case of Two Electrostatics Problems,” Eur. J. Phys., vol. 39, no. 1, Dec. 2017, doi: 10.1088/1361-6404/aa9038.

A. Maries and C. Singh, “A good diagram is valuable despite the choice of a mathematical approach to problem solving,” in 2013 Physics Education Research Conference Proceedings, Portland, OR, Feb. 2014, pp. 31–34. doi: 10.1119/perc.2013.inv.006.

J. Li and C. Singh, “Investigating and improving introductory physics students’ understanding of the electric field and superposition principle,” Eur. J. Phys., vol. 38, no. 5, p. 055702, Sep. 2017, doi: 10.1088/1361-6404/aa7618.

A. Blackwell and Y. Engelhardt, “A Meta-Taxonomy for Diagram Research,” in Diagrammatic Representation and Reasoning, M. Anderson, B. Meyer, and P. Olivier, Eds. London: Springer London, 2002, pp. 47–64. doi: 10.1007/978-1-4471-0109-3_3.

R. K. Lowe, “Constructing a mental representation from an abstract technical diagram,” Learn. Instr., vol. 3, no. 3, pp. 157–179, Jan. 1993, doi: 10.1016/0959-4752(93)90002-H.

L. D. English, “STEM education K-12: perspectives on integration,” Int. J. STEM Educ., vol. 3, no. 1, Dec. 2016, doi: 10.1186/s40594-016-0036-1.

T. R. Kelley and J. G. Knowles, “A conceptual framework for integrated STEM education,” Int. J. STEM Educ., vol. 3, no. 1, Dec. 2016, doi: 10.1186/s40594-016-0046-z.

R. Khatri, C. Henderson, R. Cole, J. E. Froyd, D. Friedrichsen, and C. Stanford, “Characteristics of well-propagated teaching innovations in undergraduate STEM,” Int. J. STEM Educ., vol. 4, no. 1, Dec. 2017, doi: 10.1186/s40594-017-0056-5.

S. Sutaphan and C. Yuenyong, “STEM Education Teaching approach: Inquiry from the Context Based,” J. Phys. Conf. Ser., vol. 1340, p. 012003, Oct. 2019, doi: 10.1088/1742-

N. Finkelstein, “Learning Physics in Context: A study of student learning about electricity and magnetism,” Int. J. Sci. Educ., vol. 27, no. 10, pp. 1187–1209, Jan. 2005, doi: 10.1080/09500690500069491.

J. W. Creswell, Educational research: planning, conducting, and evaluating quantitative and qualitative research, 4th ed. Boston: Pearson, 2012.

L. Cohen, L. Manion, and K. Morrison, Research methods in education, 6th ed. London ; New York: Routledge, 2007.

G. A. Morgan, N. L. Leech, G. W. Gloeckner, and K. C. Barrett, IBM SPSS for Introductory Statistics: Use and Interpretation, Fourth Edition. Hoboken: Taylor and Francis, 2011. Accessed: Mar. 16, 2020. [Online]. Available: http://grail.eblib.com.au/patron/FullRecord.aspx?p=668450

R. Cooper and C. Heaverlo, “Problem Solving And Creativity And Design: What Influence Do They Have On Girls’ Interest In STEM Subject Areas?,” Am. J. Eng. Educ. AJEE, vol. 4, no. 1, pp. 27–38, May 2013, doi: 10.19030/ajee.v4i1.7856.

B. Ibrahim and N. S. Rebello, “Representational task formats and problem solving strategies in kinematics and work,” Phys. Rev. Spec. Top. - Phys. Educ. Res., vol. 8, no. 1, Jun. 2012, doi: 10.1103/PhysRevSTPER.8.010126.

C. Singh, “Assessing student expertise in introductory physics with isomorphic problems. II. Effect of some potential factors on problem solving and transfer,” Phys. Rev. Spec. Top. - Phys. Educ. Res., vol. 4, no. 1, Mar. 2008, doi: 10.1103/PhysRevSTPER.4.010105.

W. M. Christensen and J. R. Thompson, “Investigating graphical representations of slope and derivative without a physics context,” Phys. Rev. Spec. Top. - Phys. Educ. Res., vol. 8, no. 2, p. 023101, Jul. 2012, doi: 10.1103/PhysRevSTPER.8.023101.

D.-H. Nguyen and N. S. Rebello, “Students’ Difficulties With Multiple Representations in Introductory Mechanics,” p. 11.




DOI: http://dx.doi.org/10.17977/um058v6i1p37-46

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Mifta Rahmadiyah



View My Stats


Journal Riset Pendidikan Fisika is indexed by: