Teknologi Pembelajaran Matematika Pembuktian Teorema Pythagoras Berbasis Visual
Abstract
Abstrak: Pythagoras merupakan seorang filsuf dan ahli matematika Yunani kuno. Salah satu kontribusi besar bagi sains dan matematika adalah Teorema Pythagoras. Teorema ini menyatakan bahwa kuadrat si si miring adalah sama dengan jumlah kuadrat dari kedua sisi lainnya. Teorema Pythagoras ditulis sebagai persamaan yang menghubungkan panjang sisi a, b, dan c, yang sering dikenal dengan bentuk umum persamaan . Bukti Teorema Pythagoras sangat bervariasi. Ada berbagai cara untuk membuktikan Teorema Pythagoras dengan skema pembuktian dari euclid bahkan di era digital dapat dibuktikan dengan menggunakan teknologi. Abad ke 21 penggunaan teknologi merupakan sebagai sumber pengembangan pembelajaran. Progam matematika GeoGebra merupakan sebuah perangkat lunak gratis dan open source yang mampu digunakan dalam pembelajaran. Pembelajaran matematika dapat dipelajari menggunakan GeoGebra seperti aljabar, geometri, kalkulus, dan statistik. GeoGebra juga merupakan perangkat lunak interaktif dalam proses pembelajaran. Artikel ini menyajikan ilustrasi visual bagaimana kita dapat menggunakan GeoGebra untuk pembelajaran dalam proses menemukan dan membuktikan Teorema Pythagoras.
Abstract: Pythagoras, one of the most famous ancient Greek philosophers and mathematician. One of the great contributions to science and mathematics was the Pythagorean Theorem. It states that the square of the hypotenuse is equal to the sum of the squares of the other two sides. The theorem Pythagoras be written as an equation relating the side of lengths c, b, and a, often known as the "Pythagorean equation" a2 + b2= c2. The evidence of the Pythagorean theorem varies greatly. There are various ways the Euclid to prove Pythagoras Theorem a simple and complex even in the digital era can use of technology. In the 21st century the use of technology as a source of learning development. In Mathematics GeoGebra is free software and open source. Mathematics learning can be studied like algebra, geometry, calculus, and statistics. GeoGebra is an interactive software for study mathematics. The paper presents illustrate how we can use GeoGebra to guide learners in the processes of discovering and Prove The Pythagorean Theorem.
Keywords
Full Text:
PDFReferences
Anabousy, A. &. (2015). Constructing and consolidating mathematical knowledge in the geogebra environment by a pair of students. Psychology of Mathematics Education, (PME-39).
Bogomolny, A. (2016). Cut The Knot. (A. Powell, Producer, & University of Chicago Press, 1995) Retrieved July 2018, from Interactive Mathematics Miscellany: http://www.cut-the-knot.org/pythagoras/
Carasco, J. (2016). Basic-Mathematics. Retrieved July 2018, from Basic Mathematics Skills: https://www.basic-mathematics.com/pythagorean-theorem-word-problems.html
Carević1, M. M., & Denić2, D. N. (2017, October). Geogebra To Help In The Understanding And Memorizing. Serbia: Science and Higher Education in Function of Sustainable Development.
Chrysanthou, I. (2008, July 14). The Use Of Ict In Primary Mathematics In Cyprus: The Case Of Geogebra. International Perspectives In Mathematics Education.
Contreras, J. N. (2014). Discovering and Extending Viviani’s Theorem with GeoGebra. (V. ANTOHE, Ed.) GeoGebra International Journal of Romania, Vol. 3 No.1.
Hohenwarter, M., & Preiner, J. (2007). Creating Mathlets with Open Source Tools. The Journal of Online Mathematics and Its Applications, 7, Article ID 1574.
Jose, R., Parada-Daza, Miguel, I., & Parada-Contzen. (2014). Pythagoras and The Creation of Knowledge. Open Journal of Philosophy, 4, 68-74. doi:http://dx.doi.org/10.4236/ojpp.2014.41010
Majerek1, D. (2014). APPLICATION OF GEOGEBRA FOR TEACHING MATHEMATICS. Advances in Science and Technology Research Journal, 8, 51-54. doi:10.12913/22998624/567
Mathematic94, N. (2018, August ). Pythagorean Theorem. Retrieved from www.geogebra.org: https://www.geogebra.org/material/show/id/sukabedj
May, V., & Courtney, S. (2016, February). Developing Meaning in Trigonometry. Illinois Mathematics Teacher, Vol 63, No 1. Retrieved from journal.ictm.org/index.php/imt/article/download/102/91
NCTM. (2000). Principles and Standards for School Mathematics. Reston: National Council of Teachers of Mathematics.
Rosero, C. J. (2016). Euclidean And Napoleonian Theorems : Their Derivation From Pythagorean. International Journal of Current Research, 8(3). Retrieved from http://www.journalcra.com
Swaminathan, S. (2014). The Pythagorean Theorem. Journal of Biodiversity, Bioprospecting, 1(3), 1. doi:10.4172/2376-0214.1000128
Tuan Minh Pham, Y. B. (2012). A Combination of a Dynamic Geometry Software With a Proof Assistant for Interactive Formal Proofs. Electronic Notes in Theoretical Computer Science 285 (2012) 43–55, 1571-0661. doi:10.1016/j.entcs.2012.06.005
DOI: http://dx.doi.org/10.17977/um031v6i12019p008
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Muhammad Naufal Faris, Saida Ulfa, Henry Praherdhiono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
======================================================================
Jurnal Inovasi dan Teknologi Pembelajaran published by Universitas Negeri Malang in collaboration with the Asosiasi Program Studi Teknologi Pendidikan Indonesia (APS TPI) and Ikatan Profesi Teknologi Pendidikan Indonesia (IPTPI) with a MoU.
Publisher Address:
Educational Technology Laboratorium, Building D5, 1st Floor
Faculty of Education, Universitas Negeri Malang
Semarang St. No. 5, Malang City, East Java Province, Postal Code 65145
Email: jinotep.fip@um.ac.id
======================================================================
JINOTEP is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JINOTEP Statistics (Since July 13th, 2020)